
Self-Locked Asynchronous Controller for RISC-V
Architecture on FPGA

Florian Deeg, Sebastian M. Sattler
Chair of Reliable Circuits and Systems

Friedrich-Alexander-University Erlangen-Nuremberg
Paul-Gordan-Str. 5, 91052 Erlangen, Germany
Email: {florian.deeg,sebastian.sattler}@fau.de

Abstract—We present a new approach for designing an asyn-
chronous control unit for a RISC-V processor using dual-rail
domino logic and a self-locking mechanism. The proposed method
is based on the observation that dual-rail domino logic can be
mapped to look-up tables in FPGAs. This allows for the design of
a self-locking asynchronous control unit that is both inherently
structurally safe and efficient. First we discuss the concept of
dual-rail domino logic and its advantages for asynchronous cir-
cuits. A self-locking mechanism is presented that can be used to
prevent asynchronous circuits from entering erroneous states. The
mechanism is based on the use of a pulse circuit that locks the
input, triggers a precharge and then an evaluate phase until it
acknowledges the outputs and unlocks the input. This ensures that
the circuit is in a stable state before it starts the computation.
Afterwards, we apply the proposed approach to the design of an
asynchronous control unit for a RISC-V processor. The control unit
is implemented using look-up tables and function stable circuits.
The result is a control unit that is both safe and efficient.

I. INTRODUCTION

Digital circuitry distinguishes between synchronous and asyn-
chronous circuits. Synchronous circuits use a common clock
signal to control circuit functions, while asynchronous circuits
use alternative synchronization methods instead of a global
clock. This alternative synchronization method results in in-
creased resistance to noise and other disturbances compared to
other circuit types. Synchronous circuits are commonly used in
microprocessor technology because they are easier to implement
and debug than asynchronous circuits. However, in certain cases,
such as when performance or power consumption is a concern,
asynchronous circuits may offer advantages. RISC-V is a novel
Instruction Set Architecture (ISA), proposed and designed by
Berkeley, that is rapidly gaining prominence on the scene. The
key concept behind this ISA is to enable the implementation of
a Reduced Instruction Set Computer (RISC) processor with a
load-store architecture without the need to pay royalties for its
use. [6] In addition, the ISA was designed with modularity in
mind. It is therefore possible to enable more features of the
processor architecture by including different ISA extensions.
Modularity and royalty-free have proven to be key concepts
for hardware developers, who are now more inclined to provide
solutions specifically tailored to a niche problem. RISC-V is still
in its infancy, and clearly behind the current market dominance
of the x86 and ARM ISA for the high-end embedded market in
System-on-a-chip (SoC) [1] with automotive applications, for

example. However, we are likely to see a growth of RISC-V
ISA.
In this paper, we show how an asynchronous controller is
designed which will control a RISC-V multicycle processor.
To achieve high switching speed with low power consumption,
dual-rail domino logic (DRDL) design will be used [4]. DRDL
stages consist of two output paths, called rails, with each a Pin
for F and F , which are organized to complement each other.
Dual-rail domino circuits are highly immune to noise and other
interference, making them suitable for various applications such
as microprocessor and field-programmable gate array (FPGA)
technology. This paper investigates the capabilities of domino
logic circuits in an FPGA and presents a technique for their
implementation in the overstated platform.
In order to guarantee the feasibility and safety of the design, a
low-level implementation is required. Our asynchronous design
requires the specification of design rules that deviate from the
standard approaches adopted clocked design. This automaton is
self-clocking and fault-tolerant due to the dual-rail approach. A
comparison with the clocked version highlights the advantages
of the self-clocking version. The complexity of the automaton
is manageable, using the necessary z-variables to define all the
states specified by the ISA. In addition, the design concept
is transferable to more complex applications. The pipeline has
been successfully tested and is confirmed to be free of glitches,
hazards and races.

II. STRUCTURE OBSERVATIONS OF DOMINO LOGIC
CIRCUITS

Domino logic circuits are created using domino gates that
have precharge PMOS for charging, n-complexes for function
realization, and NMOS transistors for evaluation. To prevent
the cascading follower stage from opening prematurely during
precharge, additional inverters are placed at the output since
function F generates a 0. A clock pulse controls the domino
inverter, which outputs a signal that can be 0 or 1 and is then
passed on to the next domino gate. In this section, we will briefly
review the individual structures on transistor level (TL), starting
with single-rail domino logic. We will then demonstrate how to
implement dual-rail domino logic circuits in a single look-up
table (LUT).



A. Single-Rail Domino Logic in FPGA

First, we will examine a single-rail domino logic (SRDL)
circuit with a keeper on TL, as displayed in Figure 1. This is now

VDD

X

dc

B

A

F

Figure 1: Single Rail Domino Logic

mapped onto a multiplexer (MUX) structure of pass transistors,
which realizes a LUT, as shown in Figure 2. Because the lower

VDD

VDD
dc

B

A

F

Figure 2: Single-Rail Domino Logic mapped to LUT3

path for dc = 0 is to charge the inverter, all assignments
are mapped to 1. The structure was not drawn to include
this path for simplicity, but only the connection to VDD is
included. The node preceding the NMOS, which is controlled
by dc, can only be charged to VDD or go high-Z and hold
the charge. Therefore, this simplification accurately reflects the
structure. Moreover, the node X can solely be pulled over AB
to GND, meaning that the top path is the only one capable of
triggering the transition from 1 to 0. Hence, the bottom path
loads from 0 to 1 (Precharge), and the upper path discharges
from 1 to 0 (Evaluate). By implementing this simplification and
demonstrating solely the paths for the transitions, we achieve
the structure depicted in Figure 2 with the exception that the
transistor for Evaluate is closer to the output, as shown in
Figure 3. This structure can be replicated by exchanging the
control inputs of the LUT.

B. Dual-Rail-Domino Logic

If two complementary SRDL circuits are used, they can be
merged to create a dual-rail domino logic circuit. An illustration

VDD

VDD

dcBA

F

Figure 3: Transitions of SRDL mapped to LUT3

of a DRDL circuit at gate level as applied in the FPGA can
be viewed in Figure 4a. Here, we have constructed two SRDL

VDD

F F

VDD

X

dc

X

FF

(a) Dual Rail Domino Logic TL

F

M1

F

M2

X0
X1
X2
X3
X4
VDD

F

F

(b) DRDL as LUT6_2

Figure 4: Dual Rail Domino Logic

circuits with their corresponding functions F and F . These
circuits are built in parallel and governed by the same dc. It is
possible to implement the DRDL circuit in a XILINX ARTIX-
7 LUT6_2 with input X5 connected to VDD, which contains
two outputs F = O6 and F = O5, see Figure 4b [7]. A pulse
circuit is now connected to the input of the domino logic module
to implement a self-locking circuit (self-X), see Figure 5. The

&

∆

VDD

nP

aP

P n

nP

P
En

R

dc

Figure 5: Pulse Circuit

self-X circuit self-locks when a pulse passes through, directly



locking the input. It is only released again by the En pin once
the pulse line has passed once. If the pulse lacks sufficient
energy, no switching operation is triggered. To solve this issue
in FPGAs, a function stable circuit is utilized [2]. This circuit
freezes at 1 in the internal state and then sets the output of
the pulse circuit to HIGH (Evaluate) once a precharge delay
of ∆ has passed. This remains the case until the pipeline is
completed, after which the input is unlocked again by the en
signal. Refer to Figure 6 for the implementation in the FPGA on
Gate Level (GL). The circuit self-locks once function stability

∆

DL
̸∼

D

D

p

r

en

dc

z

x

X Z z
z
y
δy
y

Figure 6: Self-Locked Dual-Rail Domino Logic on FPGA

is ensured, which is the case when τinv < τLUT of the LUT [2].
This stable self-locking design principle can be now applied to
pipelines in general. Function stability is ensured by limiting
the input combinations to the LUT for stable feedback. To
accomplish this, a Design Rule Check (DRC) was developed.
The DRC ensures function stability by comparing the verified
LUT assignments for feedback with that used in the current
design.

III. CONTROL UNIT FOR RISC-V ARCHITECTURE

The simplified instruction set at the core of RISC-V is small
and orthogonal, allowing for a thriving ecosystem of innovation.
This simplified approach reduces the hardware requirements and
improves overall performance by eliminating the complexity
and overhead associated with complex instruction sets. The
paper presents the design of a control unit for a 32-bit RISC-V
architecture.

A. Control Unit Design

The implementation of an asynchronous multicycle control
unit in the FPGA is demonstrated below. A multicycle unit was
chosen to fully utilize the benefits of asynchronicity by dividing
cycles and handling particularly long cycles separately. The
multicycle controller from [3] serves as our reference point for
the design. The GL representation of the automaton can be seen
in Figure 7. The state transfer function takes op-code variables
6:3 as inputs. The output function takes funct3, funct75, and the
zero flag as additional inputs. The corresponding state diagram
with the states of the multicycle processor control unit are shown
in Figure 8. [3]

CU

zero
funct75
funct3
op6:3

ctrout

Figure 7: Block Diagram of the Control Unit

S0 S1

S2

S3

S4

S5

S6 S8

S7

S9 S10

R

[0− 00] [0110] [0010] [1101] [1100]

[0000] [0100]

Figure 8: Automaton Graph

B. Control Unit

The control unit has 11 states, each of which generates
different outputs for different instructions. To understand the
different states and their function in the central processing unit
(CPU), please refer to [3]. It is designed as a Moore machine,
which needs more states than mealy machines in general. The
machine is coded as a multi-cycle machine, which means that
there are different cycles (different number of states to get back
to S0) for different instructions, e.g. the load word instruction
goes through 5 states (needs 5 cycles), while the branch-equal
(beq) instruction needs only 3 cycles. This results in different
path delays and especially for asynchronous architectures in
better performance. We have used only bits 6 to 3 of the opcode
(op6:3) as input, because they are all disjoint to each other, and
therefore each event can be controlled individually by four input
variables. The automaton is now designed as a dual-rail domino
logic pipeline circuit.

C. Pipelined Automaton

The automaton with constant instructions through all states
can be designed with a single self-X pipeline. The automaton is
coded one-hot (except for state [00000]) to make the pipeline as
easy to design as possible. Since the automaton has a maximum
of five runs, a pipeline with five states and five z-variables is
designed, see Figure 9.
Edge A and B from the opcode are A =

[
1 1 0 0

]
and

B =
[
0 1 - 0

]
∨
[
0 - 1 0

]
∨
[
1 1 0 1

]
.

The domino logic then simply passes the 1 for each state until
the final state is reached. The pipeline is designed to be function



00000

00001 00010 00100 01000 10000

R

A B
req

A B

Figure 9: One-Hot encoded Pipeline

stable and self-locking, i.e. each incoming pulse locks the input
and sets the next stage only when en = 1 and an incoming
pulse P arrives. The stabilization is valid for each node and is
therefore not drawn. To simplify the pipeline, the automaton was
coded as a mealy machine, which means that the output function
also depends on the input. This is not a problem in this case
because the input is also locked by the self-locking mechanism
and will be stable until the automaton has run through the
pipeline once. Equation 1 to Equation 11 depict the equations
for the implemented pipeline.

f = (f4, f3, f2, f1, f0)

= ((F4, F 4), (F3, F 3), (F2, F 2), (F1, F 1), (F0, F 0)) (1)

F4 = X2X1 ∨X3X0 ∨X3X1 ∨X3X2X0 (2)

F 4 = X3X1X0 ∨X3X2X0 ∨X3X2X1X0 (3)

F3 = X3 ∨X2 ∨X1 ∨X0 (4)

F 3 = X3X2X1X0 (5)

F2 = F1 (6)

F 2 = F 1 (7)

F1 = F0 (8)

F 1 = F0 (9)

F0 = REQ (10)

F 0 = REQ (11)

The resulting pipeline can be seen in Figure 10. Each stage i
has outputs fi = (Fi, F i) which feed the next stage.

δ0

M1

δ1

M2

δ2

M3

δ3

M4

δ4

M5

req

dc

f0 f1 f2 f3 f4

x

Figure 10: Pipeline in GL

IV. IMPLEMENTATION

The complete control unit consists of the pulse circuit, the
DRDL pipeline and the completion detection to generate the
en-signal to unlock the input. The completion detection consists
of an exclusive-or (XOR) gate for each stage and evaluates after
each transition to a new state whether the outputs of the dual-
rail LUTs are complementary to each other. When all XOR
gates are 1, means all dual-rail stages have disjoint outputs,
enable is set to 1 and the input is unlocked. It exhibits the same
GL representation as in Figure 6. To realize our structures, we
have integrated the control unit in a given synchronized RISC-
V CPU and used an ARTY-A7 board with an ARTIX-7 FPGA
(XC7A35TICSG324-1L). The control unit was programmed in
VHDL at low level. and the device realization in Xilinx Vivado
can be seen in Figure 11.

Figure 11: Control Unit after Implementation step in Vivado

A. Implementation Results

Table I depicts the utilization report of the FPGA. The

Unit LUTs Registers Slice
Synchronous 15 16 6

Asynchronous 15 7 5

Table I: Used Ressources in FPGA

structure that was implemented was expected to occupy a larger
area due to the dual-rail approach [5]. However, the dual-rail
stages were successfully implemented within a single LUT,
resulting in no change in the number of LUTs. Furthermore, the
self-synchronization technique reduced the number of registers.
When dealing with larger projects, it is important to consider
the trade-off between area and other factors, such as clock
skew issues. Self-clocked pipelines reduce the need for complex
clock distribution networks and do not suffer from clock skew.
Another benefit of asynchronous circuits is performance and
power consumption. To understand the benefits of performance
different modules of the CPU can be fed by different clocks
and the overall performance can be optimized. Since our syn-
chronous CPU is clocked with one global clock line there is
no change in performance as of now. This will be a future
project. The dynamic power consumption of the asynchronous
automaton was approximately one-third that of the synchronous
automaton.

V. CONCLUSION AND FUTURE WORK

This paper presents a new approach for designing an asyn-
chronous control unit for a RISC-V processor using DRDL
and a self-locking mechanism. The approach offers several
advantages over traditional synchronous approaches, including



safety and reliability, as the self-locking mechanism prevents the
circuit from hazards or races and the use of dual-rail technology
makes it resistant to glitches. Another advantage is constituted
by high switching speeds and low power consumption. Addi-
tionally, it is scalable and can easily be adapted to different
instruction sets and clocks. The feasibility of the proposed
approach was demonstrated by implementing the control unit in
an FPGA. The pipelined automaton was programmed in VHDL
at a low level, and its implementation in Vivado was successful.
The results indicate that the pipeline operates correctly and
efficiently. The proposed approach has the potential to be used
in a wide range of applications.
In future work, we plan to investigate the use of more asyn-
chronous components in the CPU. Request and acknowledge
signals will be used to communicate between different com-
ponents, further improving safety, reliability, and performance
of the architecture. We consider dividing the pipeline into
smaller steps to increase parallelism and improve performance.
To expand the use of asynchronous design, a computer-aided
design tool must be accessible to convert functionality into
secure structures.

REFERENCES

[1] Enfang Cui, Tianzheng Li, and Qian Wei. Risc-v instruction set architecture
extensions: A survey. IEEE Access, 11:24696–24711, 2023.

[2] Florian Deeg, Florian Eiermann, and Sebastian M. Sattler. Verification of
function stable muller c-element in fpga. In AmE 2023 âĂŞ Automotive
meets Electronics; 14. GMM Symposium, pages 62–67, 2023.

[3] S. Harris and D. Harris. Digital Design and Computer Architecture, RISC-V
Edition. Elsevier Science, 2021.

[4] David Hodges, Horace Jackson, and Resve Saleh. Analysis and design of
digital integrated circuits : In deep submicron technology / d.a. hodges, h.
g. jackson, r.a. saleh. 01 2004.

[5] Hossein Rezaei and Soodeh Aghli Moghaddam. Implementation of low-
power and high-performance asynchronous dual-rail join using domino
logic gates in 16-nm technology. In 2016 24th Iranian Conference on
Electrical Engineering (ICEE), pages 142–147, 2016.

[6] Andrew Waterman. Design of the risc-v instruction set architecture. 2016.
[7] Xilinx. Xilinx Vivado Design Suite 7 Series FPGA and Zynq-7000 All

Programmable SoC Libraries Guide, 2 edition, July 2012.


	Introduction
	Structure Observations of Domino Logic Circuits
	Single-Rail Domino Logic in FPGA
	Dual-Rail-Domino Logic

	Control Unit for RISC-V Architecture
	Control Unit Design
	Control Unit
	Pipelined Automaton

	Implementation
	Implementation Results

	Conclusion and Future Work
	References

