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Abstract
For deeply modeling and verification of feedback asynchronous and synchronous circuitry it is essential to partition
the circuitry into sub-structures. For this, many graph-theoretical approaches for VLSI partitioning are investigated.
In this paper, we present a novel partitioning approach based on pin-types. We state the underlying data structure to
classify a pin as input, output, state, feed, cycle and iter, respectively. The employed data structure provides the matrix
representation in different normal forms. We show the unique partitioning of a given circuit structure considered as
a directed graph (network) into its regular and singular parts. Additionally, we upgrade the low level partitioning
technique to a high level abstraction and state our formalism for functionally stable and unique parallel composition
and decomposition of network under balance (NUB).

Index Terms—network, feedback, balance, partition, parallel, composition, decomposition, functional, stable

1 Introduction

A UTOMOTIVE is one of the most conservative techno-
logy with the highest safety demand. And at the same

time, the automotive and automobile industry is confronted
with the strongly increasing demand for highly complex,
distributed, diverse and heterogeneous functionality and
connectivity, not only for safety and real time applications
but also for multimedia infotainment [1]. For the industry
to control such complex automotive systems it becomes
a dominating factor to distinguish oneself in international
business rivalry. To manage and control the complexity
there exit many VLSI partitioning techniques – the princi-
ple of divide-and-conqueror – based on graph respectively
network theory whereby a node can be a pin in a low level
abstraction respectively an arbitrary entity in a high level
abstraction, hence partitioning plays a key role in VLSI
circuits and systems [2].

Non-directed graph vs. directed graph (digraph): Let
Gi = (Ni, Ei) specify a graph with index i, set of nodes
Ni and set of edges Ei ⊆ Ni ×Ni. In the digital techno-
logy, there exist well known graph-theoretical algorithms
to divide Gi into equivalence and compatibility classes,
respectively [3]. For this classification, the direction of
an edge is not necessarily considered. To strictly differ
between a non-directed and a directed graph, we say
that a non-directed graph Gi = (Ni, Ei) is symmetric,
∀(a, b) ∈ (Ni × Ni)((a, b) ∈ Ei ⇒ (b, a) ∈ Ei),
but a directed graph (digraph) DGi = (Ni, Ei) is not
necessarily symmetric. The (serial respectively parallel)
composition of two non-directed graphs Gi and Gj is
given by connecting (identifying) the so called (non-
directed) terminal nodes ni ∈ Ni and nj ∈ Nj : ni = nj .
In case of a directed graph DGi, a terminal node ni is
more precisely classifiable as an input (source) respec-
tively output (drain) in accordance with the given data
flow in DGi, hence in this paper, we will prefer and use
digraphs to model a network of circuits and systems.

Singular vs. regular: As mentioned above, in a digraph
DGi, a node ni can be classified as an input and output,

respectively. If the node ni is the first node in a path then
one can uniquely classify ni as an input, and if ni is the
last node in a path then one can uniquely classify ni as
an output. However, the classification of ni becomes non-
trivial, e. g., if ni is in a cycle; in this case, ni can be
a state respectively a feed depending on further criteria.
Additionally, a cycle without feed is not controllable, and
a cycle without state is not observable. Thus, partitioning
a network into its regular and singular parts helps to
check consistency and testability in the earlier stage of
development.

Testing by pin-type based partitioning: The circuits
and systems have to be tested to warrant functional
safety and reliable reproducibility of safety critical system
components as well as functional stability of multimedia
and infotainment components. The tests are executed by
specific test systems [4]. One should notice, that a test
is done by pin-type based partitioning, namely: to define
a functional test, the set of channels (pins) Σ has to be
partitioned into pairwise disjoint (sub-)sets of input high
σ1, input low σ0, output high σH, output low σL, output
high-resistance σZ and output don’t care σX. Then, σ =
(σ1, σ0, σH, σL, σZ, σX) defines a test, and (σ,Σ\σ) ∈ 7Σ

partitions Σ into the 6 disjoint (sub-)sets of channels in σ
and the (sub-)set of non-specified channels in Σ\σ. Thus,
a test is defined by a partial 7-valued logic.

Synchronous vs. asynchronous circuits and systems:
Even though the class of synchronous circuit systems is
well understood and forms the base of almost all modern
microcomputers, there is a renewing and increasing in-
terest in asynchronous design. Asynchronous circuits are
designed without the assumption of a (global) master-
clock. They can be viewed as a balanced network of
digital components composed such that the components
are operating in parallel and are synchronized on voltage
transitions of the interconnecting wires [5]. Emphasis is
shifting from asynchronous-in-the-small to asynchronous
very large scale integration (VLSI) circuits and systems.
Asynchronous VLSI is progressing from a fashionable
academic research topic to a viable solution to a number of
digital VLSI design challenges [6]. The inherent reason is
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that asynchronous circuits are a promising type of digital
circuits [7] with lots of potential benefits of improved
system performance, modular design, low power consump-
tion and reduced electro-magnetic emission [8]. Further
essential characteristics of asynchronous circuits are, that
asynchronous circuits show no problems with clock skew
and related subtle issues, and are fundamentally more
tolerant of voltage, temperature and manufacturing process
variation [9],[10],[11]. It is remarkable, that the interna-
tional technology roadmap for semiconductors (report on
design [12]) predicts that up to 40% of the designs will
be driven by ’handshake clocking’ (i.e. asynchronous) in
2020 [9].

As the synchronous world is master-clocked, each feed-
back within a synchronous system can be (after several
worst case assumptions) considered as being cut [13]. This
allows the synchronous world to be formally considered
as a totally specified (edge or state) triggered system.
This abstraction then immensely contributes to profit from
existing powerful theoretical foundations based on totally
defined algebra, e.g., the (totally defined) complementary
distributive lattice (Boolean algebra), Boolean ring with
regular (totally defined invertible) plus (⊕) and singular
(distributive) multiplication (·), and the totally defined
automata theory provided with digital encodings, respec-
tively. Hence, industrial standardization and development
of powerful CAD tools for modeling, verification, syn-
thesis and test are provided inherently for synchronous
circuits and systems. However, this totally defined para-
disiacal situation is not given in the real life within the
asynchronous world. In an asynchronous circuit there is
no common and global door mechanism to synchronize
the data flow in the hole system. The asynchronous world
assumes binary signals, too, but there is no common and
discrete time. Any change of signals may cause a concur-
ring respectively competing transition of the system into
the next state. To avoid rivalry, the circuits use handshake
protocols and diverse arbiters between their components
in order to perform the necessary synchronization, com-
munication and sequencing of operations [13]. Hence, the
asynchronous circuits and systems intrinsically can be
considered as a balanced analog network of digital compo-
nents. In terms of digitally asynchronous automata theory
[14], “balanced” can be interpreted as “functionally stable”
[3], so to say the old state information is safely equal
to the new feedback state information, the asynchronous
circuitry is stably staying in a reflexive state and the
corresponding analog network is balanced, respectively.
In all remaining cases, the network is unbalanced and
unstable, and hence not defined. Thus, for asynchronous
circuits and systems, a suitable theoretical framework is
needed for formally working with partiality and dealing
with concurrency issues in general discrete-state-systems
[5] to warrant correctness by construction, which is our
aim to contribute to in this work.

Organization of the paper: In Section 2 we start with
our pin-type based partitioning of a network (digraph) in
low level abstraction. In Section 3 we upgrade the low
level partitioning technique to a high level abstraction

and state our formalism for functionally stable and unique
parallel composition and decomposition of network under
balance, and finally the paper closes with a conclusion in
Section 4.

2 Low Level Abstraction
Let DGi = (Ni, Ei) specify a network (digraph) with
index i, set of nodes Ni and set of edges Ei ⊆ Ni ×Ni.
A very simple data structure which represents DGi is a
list (matrix) Li of lists (words) wi ∈ Li of nodes (pins)
ni ∈ wi, Li = (w1, w2, · · · ). For each edge (a, b) ∈ Ei,
a new word wi = a · b is appended into the matrix
Li, ∀(a, b) ∈ (Ni × Ni)((a, b) ∈ Ei ⇒ a · b ∈ Li).
All of the remaining (non-related single) nodes ni are
appended as a word of a single node ni into the matrix
Li, ∀ni ∈ Ni(ni ∈ (Ni\

⋃
(a,b)∈Ei

{a, b}) ⇒ ni ∈ Li).
This construction of Li represents not only all edges
(Ei ⊆ Ni ×Ni) of length 2 but also contains all infor-
mation about DGi, so we can consider Li and DGi as
equivalent, Li = DGi. Notice that the order of words in
the matrix doesn’t matter.

In the following, we define a more general matrix
representation of DGi: consider an arbitrary matrix Li
with words wi ∈ Li of a (non-negative) length, |wi| ≥ 0.
An empty word (neutral element) (wi = ε, |wi| = 0)
doesn’t contain any information about DGi, so it can be
removed from the matrix Li. A word of length 1 (wi = ni,
|wi| = 1) is trivial and specifies just a node ni ∈ Ni.
Further, a word of length 2 (wi = a · b, |wi| = 2) is
trivial and specifies just an edge (a, b) ∈ Ei. A word
wi = n1 · · ·nj · nj+1 · · · of length |wi| > 2 specifies
the edges (nj , nj+1) ∈ Ei with 1 ≤ j < |wi|.

In the following, we prepare the data structures for the
partitioning of DGi: we build the set of (local) source
nodes SS and the set of (local) drain nodes SD of DGi:
SS = {a|(a, b) ∈ Ei}, SD = {b|(a, b) ∈ Ei}. Then,
the set of global input nodes SI consists of all source
nodes which does not appear as a (local) drain node,
SI = SS\SD, and vice versa, the set of global output
nodes SO consists of all drain nodes which does not
appear as a (local) source node, SI = SD\SO. We use the
circuit-finding algorithm given in [15] to extract all simple
cycles in DGi; the runtime complexity of the algorithm
is stated as O((|Ni| + |Ei|)(c + 1)) and the state space
complexity is stated as O(|Ni| + |Ei|) where c is the
number of elementary circuits in DGi. Each extracted
cycle is captured as a word wi = n1 · n2 · · ·nj · n1 with
the first and the last nodes are equal (closed path) where
the length of the cycle is |wi|− 1. Then, storing all of the
cycles in a list constructs the matrix of the regular part LR,i
of DGi. As next, we generate the matrix of edges LR̄,i
whereby each edge occurring in any cycle is excluded: for
this, we convert the matrix of the regular part LR,i into its
edge normal form and subtract LR,i from the edge matrix
Li of DGi, LR̄,i = Li\LR,i = {a · b ∈ Li|a · b 6∈ LR,i}.
Then, LR̄,i stores the singular part of DGi. Obviously, the
union of the regular and singular parts of DGi is a regu-
lar operation: DGi = Li = LR,i ∪ LR̄,i, Li\LR,i = LR̄,i,
Li\LR̄,i = LR,i.
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To extract all state nodes in DGi, in each cycle wi ∈
LR,i we search for a node ni ∈ wi where an edge ni ·
ni+1 ∈ Li exists such that the successor node ni+1 is not
in this cycle, ni+1 6∈ wi. Then, the set of all state nodes SZ
is given as SZ = {ni ∈ wi ∈ LR,i|ni ·ni+1 ∈ Li ∧ ni+1 6∈
wi}. Analogically, to extract all the feed nodes in DGi, in
each cycle wi ∈ LR,i we search for a node ni ∈ wi which
is not a state node, ni 6∈ SZ, where an edge ni−1 ·ni ∈ Li
exists such that the predecessor node ni−1 is not in this
cycle, ni−1 6∈ wi. Then, the set of all feed nodes SF is
given as SF = {ni ∈ wi ∈ LR,i|ni 6∈ SZ ∧ ni−1 · ni ∈
Li ∧ ni−1 6∈ wi}. Further, we classify a node ni as a
cycle iff ni is a node in a cycle ni ∈ wi ∈ LR,i and
neither a state nor a feed at the same time. Then the set of
all cycle nodes SC is given as SC = {ni ∈ wi ∈ LR,i|ni 6∈
SZ ∧ ni 6∈ SF}. Finally, we classify a node ni as a iter iff
ni is neither a state nor a feed nor a cycle nor an input and
nor an output. Then the set of all iter nodes SIt is given
as SIt = Ni\(SZ ∪ SF ∪ SC ∪ SI ∪ SO).

3 High Level Abstraction
We define a trace w as a word w ∈M of the algebraic
structure M = (bΣ, ·, ∅) with the carrier set bΣ (b ≥ 2),
the free associative monoid multiplication (serial compo-
sition) · and the neutral element ∅. bΣ is the structured
set of all ordered partitions of b blocks σk (disjoint
subsets) over Σ, a partition σ ∈ bΣ is then termed as
σ = (σ1, σ2, · · · , σk, · · · , σb). It is reasonable to arrange,
that the block σb is the remaining block after subtracting
all other blocks from Σ, σb = Σ\

⋃b−1
k=1(σk). So, in the

special case of b = 2 it holds σ = (σ1, σ2) = (σ1,Σ\σ1).
Obviously, in this case, one can ignore the redundant
information Σ\σ1 and just consider σ ∈ 2Σ as a subset of
Σ, σ ⊆ Σ.

The advantage of our definition is, that we can very
easily explicitly and exklusively specify traces with si-
multaneous events. As an example, let Σ = {A,B,C}
be the set of single events and σ ∈ 2Σ an endofunction
(operation) [16], specified as the set of simultaneously
occurring events, acting on the set of states Z. Then,
for the states z, z′ ∈ Z and σ = {A,B}, zσ = z′

is the transition from z to z′ after {A,B} acts on z.
Notice that {A,B} 6= {A} · {B} 6= {B} · {A}, thus, the
specified (sequential) transitions z{A,B}, z{A}·{B} and
z{B} · {A} do not necessarily lead to the same state. In
other words, we consider each σ ∈ bΣ as an hyper event
(set of partitioned events, endofunction, operation, input),
which (possibly partially) acts simultaneously on the set
of states Z of an automaton A. Thus, a σ ∈ bΣ itself
induces the corresponding trace on Z which is in general
composed of the singular (non-feedback) parts and regular
parts (cycles). We use the symbol ∗ to mark a “stack-at”
state, where no transition is defined, meaning that any trace
becomes deadlocked, see Fig. 1.

Additionally, we profit from the automata theory
equipped with multi-set [17] to “control the idempotency
property” of an arbitrary set. This is especially interesting
for projecting a non-deterministic trace into qualified bases
to encode deterministic parallel traces, see Fig. 2.

σ ∈ bΣ ⇒ Zσ

•
•

∗
•

•
•

•
•

•
•

•
•

•
•

•
•

Fig. 1: A hyper event σ ∈ bΣ (possibly partially) acts on
the set of states Z of an automaton A and induces the
corresponding trace. In this example, the trace is composed
of four singular (non-feedback) parts and three regular
parts (cycles of the length 4, 3 and 1). σ is not defined on
the state ∗, so the trace becomes deadlocked on this state.

z1 z2 z3 z4 z5
σ1 σ2 σ3 σ4

σ2

(a) non-deterministic trace

z1 z2 z3 z4 z5

z′1 z′2 z′4 z′4 z′5

σ1 σ2 σ3 σ4

σ1 σ2 ∅ σ4

(b) deterministic parallel trace

Fig. 2: Illustration of projecting a non-deterministic trace
(Fig. 2a) into deterministic parallel traces (Fig. 2b). Notice
that ∅ is the neutral element of the associative monoid
multiplication · acting reflexively on the set of states
(doing nothing) per definition.

Homo-, Mono- and Epimorphism: [18] shows how the
analog circuit-level models, can be used as the basis of for-
mal verification and describes a semi-algorithmic method
to extract finite state models from an analog circuit-level
model by means of homomorphic (behavior preserving)
transformations. In view of electrical and communications
engineering a homomorphism can be considered as a data
flow channel, such that the channel is capable to preserve
the operations on the source and consistently transmit them
to the sink. As an example, let A1 and A2 are compatible
regular matrices modeling some system entities. Then,
the determinant det(A1 · A2) = det(A1) · det(A2) is a
homomorphism, which preserves the associative and non-
commutative matrix multiplication. In this paper, we also
profit form homomorphism (represented with the arrow
symbol → between two objects A and B, A → B), and
particularly use monomorphism (injective respectively left
total and one-to-one homomorphism, represented with the
arrow symbol � between two objects) and epimorphism
(surjective respectively right total homomorphism, repre-
sented with the arrow symbol � between two objects)
[16]. As an example for the co-operation of monomor-
phism and epimorphism, the direct sum A⊕B of two bases
A and B is equipped with two epimorphisms (projec-
tions) πA : A⊕B � A and πB : A⊕B � B, and two
monomorphisms iA : A� A⊕B and iB : B� A⊕B.
This co-operation is intuitively given in the Euclidean
space E2 = A⊕B = R⊕R with (x, y) ∈ E2, (x, y)

πA7−→ x,
(x, y)

πB7−→ y, x iA7−→ (x, 0) and y iB7−→ (0, y).
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3.1 Limits and universal constructions
The limit diagram is a universal theoretical framework
in the category theory [16]. It is the foundation in the
algebraic world to bring two objects A and B (algebraic
structures, entities, subsystems), which are completely not
related to each other (there is no morphism between
A and B), into the maximal relation by building the
product (

∏
) of A and B, A

∏
B, and dual to

∏
, into

the minimal relation by building the co-product (
∐

) of
A and B, A

∐
B . Hence, the corresponding diagram

is a non-commutative one, πA ◦ iA 6= πB ◦ iB see
Fig. 3a1. This universal construct (Fig. 3) has two essential
universal properties, called as least upper bound (LUB)
and greatest lower bound (GLB): A

∐
B is called LUB,

since for each such diagram (∀) there exists at least one (∃)
homomorphism u (99K) that prolongs from A

∐
B into a

common entity C, see Fig. 3b. Further, A
∏
B is called

GLB, since for each such diagram (∀) there exists at least
one (∃) homomorphism u′ (99K) that shortens from C ′ to
a common entity A

∏
B, see Fig. 3c.

A
∏
B

A B

A
∐
B

6=

πA πB

iA iB

(a) Limit diagram

A B

A
∐
B

C

iA iB

∃ u

f g

(b) Least upper bound

A
∏
B

A B

C ′

πA πB

∃ u′

f g

(c) Greatest lower bound

A
∏
B

A BX

∆ker

πA πB

f g

u′∃!

iπA iπB

(d) ∆ker, PB (pull-back)

A BX

A
∐
B

∆coker

iA iB

u∃!
iAπ iBπ

f g

(e) ∆coker, PO (push-out)

Fig. 3: Limits and universal constructions in category
theory

Consider the entity X , then, ∆ker is defined as ∆ker =
{(a, b) ∈ A

∏
B | af = bg}. One can inherently consider

∆ker as a pull-back (PB) [16]. ∆ker becomes integrated
into the limit diagram using the monomorphism ∆ker�
A
∏
B, see Fig. 3d. And dual to ∆ker, ∆coker is defined

as ∆coker = (A
∐
B)/〈xf,xg〉∼ with x ∈ X . One can

inherently consider ∆coker as a push-out (PO). ∆coker
becomes integrated into the limit diagram using the epi-
morphism A

∐
B � ∆coker, see Fig. 3e.

In this paper, we use the limit construction to bring
traces of potentially non-related system entities (circuit
structures, gates, automata) into universal relation. This
then naturally leads to the parallel composition of enti-

1. Notice: we read the (serial) composition of morphisms from left to right, i. e.,
πA ◦ iA says first πA then iA.

ties preserving structural and behavioral properties and
warranting conflict-free and maximum possible flow of
information specified and controlled by any collection of
free bases. In Section 3.2, we will use this technique to
construct our associative and invertible Automata Based
Composition (ABC) to model the balanced network. We
have profit from the work in [19], but in this paper we
have significantly upgraded the formalism using more
generalized trace monoids, automata definitions, informa-
tion encoding and decoding and developed the theoretical
framework using limits and universal constructions in the
category theory.

3.2 Theoretical Framework
At the beginning of Section 3 we defined the trace monoid
Mi = (bΣi , ·, ∅) for an entity (subsystem) Ai. As we are
interested in associative and invertible parallel composi-
tion, we will take a co-algebraic approach to define the
monomorphism ρ (encoder) and the dual epimorphism
ρ−1 (decoder) to construct our codec for a trace (w =
σ · σ′ · · · ) ∈M of hyper events σ, σ′ ∈ bΣ:

Definition 1 (σ-Codec). ρ : M||�Mi

∏
Mj

with M|| = (bΣ|| , ·, ∅) and Σ|| = Σi ∪ Σj . For
generators σ of M|| we declare ρ : σ 7→ (σi, σj)
with σi = σ ∩ Σi and σj = σ ∩ Σj . Further, it holds
ρ(′σ · ′′σ) = ρ(′σ) · ρ(′′σ) = ′(σi, σj) · ′′(σi, σj) =
(′σi ·′′σi , ′σj ·′′σj) . ρ denotes the σ-Encoder. Dual to ρ,
ρ−1 is defined as ρ−1 : Mi

∐
Mj �M|| and denotes the

corresponding σ-Decoder. Furthermore, ”ρ(σ) exists” if
and only if (σi ∩ Σj = σj ∩ Σi).

In the following, we will integrate ρ and ρ−1 into
the limit diagram (Fig. 3): Let us consider two trace
monoids Mi and Mj as two bases. Then, the product
is Mi

∏
Mj , the coproduct is Mi

∐
Mj , and thus, M||

becomes the ∆ker and ∆coker at the same time, see
Fig. 4. The required monomorphic channel encoding ρ is
given by two epimorphisms (projections) ρi = ρπi with
ρi : M|| �Mi and ρj = ρπj with ρj : M|| �Mj , and
the required epimorphic channel decoding ρ−1 is given
by two monomorphisms (injections) ρ−1

i = iiρ
−1 with

ρ−1
i : Mi�M|| and ρ−1

j = ijρ
−1 with ρ−1

j : Mj �M||
, see Fig. 4a. Fig. 4b shows the simultaneously parallel and
associative composition of two traces wi and wj closed
under inversion. Fig. 4c shows the hybrid view considering
traces in detail. In Fig. 4d, herewith, we introduce our
definition of + which enables the linear operation view of
the composition procedure.

In the following we state the axioms for ρ−1 (we are, of
course, only interested in arguments at which ρ(σ) exists).
The following formulae are to be understood as universally
quantified:

Axiom 1 (Invertibility). ρ(ρ−1(σi, σj)) = (σi, σj)

Axiom 2 (Associativity). ρ−1(ρ−1(σi, σj), σk) =
ρ−1(σi, ρ

−1(σj , σk)) =: ρ−1(σi, σj , σk) (herewith intro-
ducing an abbreviated notation)

Axiom 3 (Commutativity). ρ−1(σi, σj) = ρ−1(σj , σi)

Axiom 4 (Neutral El.). ρ−1(∅, σi) = ρ−1(σi, ∅) = σi
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Mi

∏
Mj

Mi Mj

Mi

∐
Mj

M||

M||

πi πj

ii ij

ρ

ρ−1
ρ
i

=
ρ
π
i

ρ
j

=
ρ
π
j

ρ
−

1
i

=
i i
ρ
−

1

ρ
−

1
j

=
i j
ρ
−

1

(a) Monoid view

(wi, wj)

(wi) (wj)

(wi, wj)

(wi ∪ wj)

(wi t wj)

πi πj

ii ij

ρ

ρ−1

(b) Trace view

(′σi ·′′σi, ′σj ·′′σj)

(′σi ·′′σi) (′σj ·′′σj)

(wi, wj)

(w||)

(′σ · ′′σ)

πi πj

ii ij

ρ

ρ−1

(c) Hybrid view

(
(′σi ·′′σi · · ·)︸ ︷︷ ︸

wi

(′σj ·′′σj · · ·)︸ ︷︷ ︸
wj

)
,

(w|| = wi ∨ wj)

(′σ · ′′σ · · · = wi t wj)

ρ

ρ−1−wj

∨wj

−wi

∨wi

(d) Linear operation view with Mi +Mj

Fig. 4: Limit diagram of the channel encoding and decod-
ing, which defines the simultaneously parallel associative
and invertible composition of two traces wi and wj .
Trace wi is given as (wi = ′σi · ′′σi · · · ) ∈Mi of hyper
events σi ∈ bΣi with Mi = (bΣi , ·, ∅) and trace wj is given
as (wj = ′σj · ′′σj · · · ) ∈Mj of hyper events σj ∈ bΣj

with Mj = (bΣj , ·, ∅). The uniquely de-composed trace
w|| is given as (w|| = ′σ|| · ′′σ|| · · · ) ∈M|| of hyper events
σ|| ∈ bΣ|| with M|| = (bΣ|| , ·, ∅) and Σ|| = Σi ∪ Σj .

Axiom 5 (Idempotency). ρ−1(σi, σi) = σi for
Mi 3 σi ∈Mj

3.2.1 Automata Based Composition (ABC)

In the following, we will employ the σ-Codec (Def. 1) as
the functor to induce the Automata Based Composition.

Definition 2 (Automaton). Let Ai = (Zi, b
Σi , zi,0, ZFi)

be a 4-tuple with index i. Then, Ai specifies a possibly
incomplete (partial) deterministic finite automaton with set
of states Zi, structured set of inputs (hyper events) bΣi ,
initial state zi,0 ∈ Zi and set of final states ZFi ⊆ Zi. Let
Mi = (bΣi , ·, ∅) denote the corresponding trace monoid
over bΣi . Let σi ∈ bΣi act on Zi by z′i = ziσi , and ∅ acts
as the identity on Zi. By sequential application Mi acts
also on Zi.

Definition 3 (ABC). We define the automaton A|| =

Ai||Aj = (Z||, b
Σ|| , z||,0,ZF ||) of two automata Ai and

Aj with set of states Z|| = Zi × Zj , set of hyper events
bΣ|| , set of single events Σ|| = Σi ∪ Σj , initial state
z||,0 = (zi,0, zj,0) and set of final states ZF || = ZFi×ZFj .
Then, the commutative diagram in Fig. 5 defines the kernel
for the ABC algorithm.

(zi, zj)

(zi, zj)

(σi, σj)

(z||)

(z||)

(σ||)

||

||

ρ
(zi, zj) (z||)

(σi, σj) (σ||)

||

ρ

Fig. 5: Commutative diagram (expanded on the left side,
abbreviated on the right side), which defines the kernel for
the ABC algorithm.

3.2.2 Formalism and language properties
In the following we refer to some basic formalisms and
properties of the ABC. The epimorphic property of ρ−1

(Axiom 1, Fact) warrants the overall consistency of the
ABC. Imagine that n parallel system components are
(associatively, see Axiom 2) composed to an overall com-
ponent system, A1||A2||...||An = A||, and let a scenario
(actions, trace, scanning, sampling, sensing) of length m is
specified (captured, stored). Then, the following formalism
represents this scenario, with σ(k) = σ(k − 1) · kσ and
σ(−1) = ∅ :
az||(σ||(0), σ||(1), · · · , σ||(m− 1)) = n(1z||,

2z||, · · · ,mz||)
az1

...
zn


Tσ1(0) σ1(1) · · · σ1(m− 1)

...
...

...
...

σn(0) σn(1) · · ·σn(m− 1)

=

n
1z1

2z1 · · · mz1

...
...

...
...

1zn
2zn · · ·mzn


T

The transpose of the right side of the equation pre-
serves the component-wise transpose of the sequential
data structure. z1, ..., zn are the particular states of the n
parallel entities. σi(m− 1) = 0σi · 1σi · · · · · m−1σi ∈Mi

is a word (trace) coding the sequence of m actions
on Ai whereby each action consists of particular events
which are simultaneously occurring within the respective
action. 0zi

1zi
2zi · · ·mzi is the row vector of particular

states of length m+1 representing the behavioral scenario
of Ai on acting σi(m − 1). Correspondingly alike in
case of A||. Obviously, the commutativity (Axiom 3)
induces the isomorphism between Ai||Aj ∼= Aj ||Ai. Fur-
ther, the neutral element (Axiom 4) induces the iden-
tical entity (identity) 1|| of the ABC up to isomor-
phism, 1||||Ai ∼= Ai||1|| ∼= Ai. The idempotency (Ax-
iom 5) even induces the idempotency up to isomorphism,
Ai||Ai ∼= Ai.

The properties of the ABC are also allowing to define
a rather topologically and statistically motivated behav-
ioral representation2. For a given entity Ai, consider a
(|Zi| + |Σi|)-dimensional linear vector space. Then, the

2. like e.g. in case of the so called barcodes ([20])

Automotive meets Electronics ∙ 18. – 19.02.2014 ∙ Dortmund

ISBN 978-3-8007-3580-8   29   © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach 



nz

elements in kσi
(ordered)

k0

•

•
••
•

1

•

••
•
•

2

•

•••
3

•

•

••

4

•

••
••

5

•

••
••

6

•

••
•
•

Fig. 6: A Fingerprint Code of the trace 0σi · 1σi · · · · · kσi
and the induced behavioral scenario azi

1zi
2zi · · · kzi nzi

in Ai.

diagram in Figure 6 represents a sequence 0σi ·1σi ·· · ··kσi
and an induced behavioral scenario azi

1zi
2zi · · · kzi nzi in

Ai, which is in fact a trace in the corresponding linear
vector space. With regard to the commutative diagram
(Fig. 5) in Def. 3 the ABC can be interpreted as the com-
position and respectively decomposition of linear vector
spaces composing and respectively decomposing particular
corresponding traces in each linear vector space. The
fingerprint code (FPC) can be seen as a suitable histogram
representation for all kind of data based management,
analysis and verification.

Complexity and Scalability: In the following, we dis-
cuss the properties of the formalism regarding to complex-
ity. The universal property together with the associativity
of the ABC warrant the ABC kernel to be realized as
a non-hierarchic algorithm. This is an essential feature,
since the algorithm can decide to start to operate with
favorable entities regarding to a cost function, hence the
ABC operation becomes easily tunable for specific appli-
cations. In addition, the underlying commutativity is a big
advantage, too, since the entities can algorithmically get
rearranged for the ABC such that the efficiency increases
regarding to the specific quality structure of the entities.
The idempotency ensures the ABC to discard redundant
information. Then again, the isomorphism allows the en-
tities to be designed for preserving sufficient information
after de-composition using the multi-set property of the
formalism.

4 Conclusion
In this work, we have presented an overall theoretical
framework in a low as well as high level abstraction
to model, validate and verify an asynchronous feedback
network under balance (NUB). As opposed to synchronous
networks which are globally master-clocked and hence
totally defined, asynchronous networks are partially de-
fined. Thus, functionally stable operating procedure for
asynchronous NUB needs to be warranted especially for
safety critical systems. It is well known that widely
established simulation techniques are not by themselves
adequate to ensure the correctness of complex systems.
On the other hand, although there exist powerful theo-
retical foundations for formal modeling and verification,
almost all of these theories are based on totally defined
algebra, e. g. Boolean algebra, Boolean ring and digital

automata theory. Thus, adequate theoretical framework
is needed, which is inherently capable to work with
partiality. In addition, it has to be closed under inversion.
This is an essential requirement for the purposes of test
and diagnosis. Furthermore, the theory has to support
simultaneously parallel and associative composition and
decomposition to being able to authentically model the
inherent simultaneous and parallel operating behavior of
the asynchronous NUB. Our theoretical framework fulfills
these requirements. It is based on limit diagram and
universal construction of the theory of categories. We
build the data flow channel using monomorphisms and
epimorphisms which formally warrant the structure and
behavior preserving injective and projective morphisms. It
contributes maximum possible flow of correct information
specified and controlled by any collection of free bases.
Therefore, the σ-Codec provides unique information to
observe and detect corrupt information. We show how to
test and localize corruptness and to avoid feeding back
such inconsistent information into the NUB. This is an
interesting feature in view of a correct-by-construction
paradigm as the NUB becomes able to do self-check at any
time and in all situations. This means, that the NUB can
“axiomatically halt itself and then axiomatically continue
again” using delay-insensitive asynchronous synchroniza-
tion elements. Thus, “safely preserving the last correct
information” and “safely preventing the propagation of
inconsistent data” becomes warranted.
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