
Verification and Test of Real Circuits
Structure-Preserving Modelling based on Signal Flow Graph

Mohamed Denguir, Sebastian M. Sattler

Friedrich-Alexander-University Erlangen Nuremberg (FAU)

Chair of Reliable Circuits and Systems (LZS)

Erlangen, Germany

{mohamed.denguir, sebastian.sattler}@fau.de

Abstract—For the verification and functional safety of real

systems, e.g. of analog and digital circuits, the function associated

with the real structure must be modelled with structural integrity

ensured. This means that the consistency of the formally derived

and modelled function with the function generated by the real

structure must be ensured. In addition, the modelled function

must exhibit a behavior that is equal to the function to be

realized. In this article, a structure-preserving verification

method is at first presented, and illustrated with a real digital

circuit by verifying the circuit and respectively testing it for

known, self-injected faults. The results are displayed as signal

flow graphs by means of self-written program codes.

Keywords—Verification; Test; Structure-preserving modelling

I. INTRODUCTION AND MOTIVATION

A test program is used to implement a given test
specification on a special test target system. The reliability of
the test operation itself is ensured by the robust and
reproducible execution of the test program. It is necessary to
test all paths of the successive parts of a test program in a solid
way [1]. However, the testing of technically real structures is
becoming more challenging with increasing complexity of the
system and its functional diversity. The exact assignment of
virtual (test) functionality and real structure should be carried
out [2]. It is therefore useful to use a robust and effective
verification method that can be applied to test the functionality
of complex and targeted real systems. This method is called the
"Structure-Preserving Modelling based on Signal Flow Graph”.

II. STRUCTURE-PRESERVING MODELING

The modelling of real systems by the use of functions
(using the description of the behavior) that preserve the
structure, leads to a presentation in a signal flow graph
(SFG). A SFG is the presentation of an abstract algebra, the
formulas that can be used to verify structure-preserved
images. The SFG is the directed graphical presentation of a
multiple set (multi-set), which consists of so-called edges and
nodes, which represent morphisms (e.g. functions) and objects
(e.g. sets). The phase lists of a SFG consisting of nodes and
edges are independent from one another and without restriction
of the generality concurrent to each other (simultaneously in

parallel) [2]. This data model in positive logic (PL) with the
properties associativity (asso) and identity (id) exhibits the
prerequisites for encoding a control circuit [3]. This data model
splits into Operational (OP) and Control  (CTRL) and
guarantees specification (spec), test (test), functioning (k) and
non-functioning (/k) for each partial structure.

A. Steps to create the data model

The creation of the data model is divided into three steps:
First (1), the real pins that occur in the real structure must each
be designated with a positive or negative literal, which
corresponds to the embedding of the real structure into a
coding universe. Then (2), the real structure is abstracted in an
event-based manner and in a model simulated by a directional
signal flow using two paths (dual-rail). Subsequently (3), the
state transitions of the sub-models are described in
propositional logic expressions (AA) and their signal flow
graphs (SFG) are encoded with (1, 0, -) in three-valued logic
(so-called ternary vector lists – TVL [4]).

B. Rules for generating the model

The first step towards the creation of the data model, the
labelling of the pins, can be channelled with the "directed" laws
of the respective physics or electrical engineering by means of
two rules. First and most important rule: naming pins according
to pin partitioning [2], these are states (S), primary inputs (PI)
and primary outputs (PO). The second rule is to fine-tune the
pins according to the transmitted digital signal value (1 or 0),
negative literal for signal value equals 0 (low) and positive
literal for signal value equals 1 (high). The negative literal is
marked with the prefixed symbol "/". Regarding the second
step for creating the data model, the representation of the
"substitutable" complementarity by means of the operation
switch (¬) is carried out in dual rail [5] (see III.C). For carrying
out the third step for creating the data model, the coding of the
operations spec, test, k and /k in TVL: k and /k require realities
that are e.g. components and lines, spec defined limits
and test fault models to be known. As each state is splitted into
two states called a present state Sa and a next state Sn, S =
(Sa, Sn) is generally determined in that way, that the
operations spec and test are directed from Sa to Sn, while the
controls k and /k are directed from Sn to Sa. Thus, as soon as

978-1-5386-1813-4/17/$31.00 ©2017 IEEE

the spec operation (OP) is executed, a pin or a state retains its
value in terms of a state stabilization [6], Sn = Sa. By contrast,
test is used as operation (OP) (called Fail), the state changes
into the same state with a negative literal, Sn = /Sa. Since k and
/k as controls (CTRL) depend on their respective reality, it is
inconvenient to develop a general formula for their
implementation. They are modelled explicitly or implicitly (see
Section III.D).

C. Common example

The particular data model is generated from the following
design pattern. Let X and Y be two real pins, that are present in
a structure, then its associated SFG is shown (in PL) in Fig.
1. The SFG shown in Fig. 1 can be reduced to the SFG in Fig.
2, X = (Xa, Xn) and Y = (Ya, Yn). TABLE I shows the state
transitions as phase lists. The state transitions (events) from
defined limits, reality and known errors in TABLE I are
encoded in TVL. The star symbol "*" represents "undefined"

regarding the entire article. Is a list place reserved with "", it
means that this place does not exist.

Fig. 1. Common data model (in PL)

Fig. 2. Reduced data model (in PL)

TABLE I. STATE TRANSITIONS AND FUNCTIONS (IN TVL)

Sa Event Sn Function

X Y defined
limits real world known

faults X Y OP CTRL
1  (1,0,-)   1 * spec

X 
 1  (1,0,-)  1   k

X
1    (1,0,-) 0  test

X 
 0  (1,0,-)  1   /k

X
 1 (1,0,-)    1 spec

Y 
 1   (1,0,-)  0 test

Y 
III. EXAMPLE DIGITAL CIRCUIT

In this chapter, a real digital circuit (DUT - Device-Under-
Test) should be prepared for the verification of known, self-
defined errors with the help of the "Structure-Preserving
Modelling based on SFG". We consider the digital circuit

shown in Fig. 3, which is already available on a real board. The
circuit is equipped with jumpers, which serve as well-known
faults to be modelled. The goal we pursue is to carry out the
verification on the basis of deliberately installed errors by
plugging in and removing jumpers, respectively. For this
purpose, an automatic test device based on a μ-Controller is
developed and programmed. In this article, we will restrict
ourselves to the theoretical part, the report on the structure-
preserving modeling of a circuit using SFG.

A. Schematic representation of the DUT

The digital circuit (DUT) in Fig. 3 shows CMOS inverters
(INV_1 and INV_2) connected in series and controlled by a
npn BJT. The circuit includes six switches S1, S2, S3, S4, S5
and S6 serving as jumpers and can be plugged in (closed) or
out (open) manually. In order to avoid any undesirable
electrical interruptions or short circuits in normal operation,
switches S1, S3 and S6 are closed, while switches S2, S4 and
S5 are open. If a digital 1 is set at the input (A_CTRL),
transistor T1 becomes conductive and Pin B is pulled to GND
(digital 0). If switches S1 and S2 are in normal operation, Pin C
takes this digital 0. This is then inverted by the inverter
(INV_1) and outputted as digital 1 to Pin D. Pin E accepts the
digital 1 from Pin D if the switches S3 and S4 are switched to
normal operation. This is then inverted by the inverter (INV_2)
and outputted as digital 0 to pin F. Pin G at the output accepts
the digital 0 from pin F if the switches S5 and S6 are in normal
operation. If, on the other hand, a digital 0 is applied to the
input, the transistor T1 is non-conductive and Pin B takes the
digital 1 out of the ohmic resistors R2 and R3 >> R2 due to the
voltage divider. The value is switched to a digital 0 by the
inverter (INV_1) and transferred to Pin E. Resulting of inverter
(INV_2) the value is switched again to a digital 0 and
propagated to Pin G.

Fig. 3. Schematic of DUT (with courtesy from Liebherr GmbH)

B. Designate the pins

It is desired to get a digital 1 at the output, but for that a
digital 0 must be applied to the input (A_CTRL). Therefore,
after taking account of the rules in section II.B, the input pin
A_CTRL at the npn-base must be declared as negative literal
/A and described as primary input (PI). Consequently, after
consideration of the reality (Section III.A), the real pins B, C, F
and also G must be declared as positive literals B, C, F and G
and the pins D and E as negative literals /D and /E. This results
in six pins or states (B, C, /D, /E, F, G) and a primary input
(/A). Pin G is both a state and primary output (PO). The
switches are declared as positive literal when closed in normal
operation, otherwise with negative literal. The list is S1, /S2,
S3, /S4, /S5 and S6.

R1
T1

S1 R2

R3
S2

INV_1

S3
R4

INV_2
S4

S6

S5
R5

B C D
E F G

C. SFG in Dual-Rail

After successfully implementing the first step of the
verification method, the designating of the pins, we can now
apply the second step, abstracting the reality in event-based
manner, and present a SFG in dual-rail using the operation
switch (¬). By the operation switch, the four original states (B,
C, /D, /E, F, G) become six substitutable complementary states
(¬B, ¬C, ¬/D, ¬/E, ¬F, ¬G). On each of the twelve states the
function test is applied, which means that twelve substitutable,
complementary states can be achieved. In summary, the states
B, C, /D, /E, F and G result in /B /C, D, E, /F and /G and from
¬B, ¬C, ¬/D, ¬/E, ¬F and ¬G results /¬B, /¬C, /¬/D, /¬/E, /¬F
and /¬G. Fig. 4 shows the SFG. The state (5V, /GND) in the
SFG represents the voltage supply. From state (5V, /GND) to
state B and dual to that to state ¬B follows by the reality k5V
und k/GND.

Fig. 4. Data model (SFG) of the DUT

D. Coding of the functions (OP, CTRL)

The following coding-tables TABLE II to TABLE VII
serve together with their SFG as more detailed description of
weighted edges of the SFG from Fig. 4. They exhibit the
specific encoding of the Operational Functions
spec and test, and Control Functions k and /k. This is done,
after taking into account the rules from section II.B, analogous
to the structure of TABLE I, δ(Sa, Sn) depends on the states (B,
C, /D, /E, F, G), the primary input (/A) and the fault models
(S1, /S2, S3, / S4, / S5, S6).

In TABLE II, the state B retains its digital 1 if the function
specB is fulfilled. This is done without influence of the errors,

i.e. (S1, /S2) = [], the value of the primary input /A is set to
digital 0. If the function testB is fulfilled, state B changes to
digital 0. This is due to the errors (/A, S1 /S2) = [0 1 0] and

(/A, S1 / S2) = [1 - -]. In the case of the first combination (S1,
/S2) = [1 0], a known fault is detected as present, switch S2 is
closed (electrical short circuit). In the other case, (S1, /S2) = [-
1], it could occur (S1, /S2) = [1 1], causing the known fault to
be correctly recognized as not present. In this way, the data
model contains all the answers to known errors detected as
existing faults and known errors detected as non-existent faults.

Since power supply is always assumed to exist, k5V and
k/GND are considered as fulfilled and do not require coding
(related SFG to TABLE II).

On the other hand kB, /kB and k¬B are explicitly modelled in
TABLE III without consideration of fault models. For kB or k¬B
modelled with (C, B) = [1 1] or (C, B) = [0 0], if for example
the component R3 is present and for /kB with (C, B) = [0 1], for
example if R3 << R2.

TABLE II. OP ENCODED IN B

B /A S1 /S2 B Function
1 0   1 spec

B
0 1   0 spec

¬B
1 1 - - 0 test

B
1 0 1 0 0
0 0 1 1 1 test

¬B
0 0 0 - 1

TABLE III. (OP, CTRL) ENCODED IN (C, B)

C S1 /S2 C Function
1   1 spec

C
0   0 spec

¬C
1 - 0 0 test

C
1 0 - 0

C S1 /S2 B Function
1   1 k

B
0   1 /k

B
0   0 k

¬B

TABLE IV. OP ENCODED IN /D

/D S3 S4 C /D Function
0   1 0 spec

/D
1   0 1 spec

¬/D
1 1 0  0 test

¬/D

5V
k
5V

B

spec
B

test
B

/GND
k
/GND

spec
¬B

test
¬B

¬B

/B

/¬B

B
k
B

C

spec
C

/k
B

¬B
k
¬B

spec
¬C

¬C

/C

test
C

C 1
/D

spec
/D

¬C

spec
¬D

¬/D 1

test
¬/D

/¬/D

The coding of the functions kC and k¬C is already covered
by spec/D and spec¬/D with (/D, C, /D) = [0 1 0] and (/D, C, /D)
= [1 0 1]. These are the edges from C to /D and ¬C to ¬/ D in
the corresponding SFG in 0. However, kF and k¬F are explicitly
modelled in TABLE VII and are holding the output stage F.
For the coding of additional functions similar procedure
applied.

TABLE V. (OP, CTRL) ENCODED IN (/E, /D)

/E S3 /S4 /E Function
0   0 spec

/E
1   1 spec

¬/E
1 - 0 0 test

¬/E
1 0 - 0

/E S3 /S4 /D Function
0   0 k

/D
1   0 /k

/D
1   1 k

¬/D

TABLE VI. OP ENCODED IN F

F /S5 S6 /E F Function
1   0 1 spec

F
0   1 0 spec

¬F
1 0 -  0 test

F

TABLE VII. (OP, CTRL) ENCODED IN (G, F)

G /S5 S6 G Function
1   1 spec

G
0   0 spec

¬G
1 - 0 0 test

G
1 0 - 0

F /S5 S6 F Function
1   1 k

F
0   0 k

¬F

Not all functions or state transitions are encoded in the SFG
in Fig. 4. (/kC, /k/E, /kF, /k¬B, /k¬C, /k¬/D, /k¬/E, /k¬F) do not lead
to any added value, (test/D, test/E, test¬C, test¬F, test¬G) will never
be fulfilled. Therefore, the states D, /¬C, /¬F and /¬G are not
achieved in Fig. 4. The merging of the corresponding SFG in
TABLE II, TABLE III, 0, TABLE V, TABLE VI and TABLE
VII gives the SFG in Fig. 5.

Fig. 5. Data model (SFG) of the DUT

E. Use cases

In this section, the expected results of the step-by-step
verification method for the predefined digital circuit are now
presented. Through a self-written program in VBA (Visual
Basic for Applications) is-values shall be compared to set-
values from TABLE II to TABLE VII. The program visualizes
the corresponding SFG, coming from the resulting data
model from Fig. 5 with the exception of four not reached states
D, /¬C, /¬F and /¬G. All phase lists (edges with their nodes) in
this SFG are without restriction of the generality as
adjoining. The operations spec, test, k and /k are coloured - if
they are fulfilled - as green, red, black and blue arrows. If they
are not, dashed arrows serve as their visualization. In the first
case (Fig. 6) all switches S operate in normal mode (the known
faults are not present), so obtaining a digital 1 in the Is-
table. Input /A has a digital 0. Since spec is fulfilled regarding
B, C, /D, /E, F and G, each state (/B, /C, D, E) maintains its
value (Sn = Sa) and the corresponding edges are represented as
green arrows. Similarly, k regarding /B, /D and F are
fulfilled. The remaining functions are not fulfilled due to the
different actual- and set values and are marked accordingly. In
the second case (Fig. 7) input A is set to digital 1, which in the
first step results in the takeover of digital 0 at
B. Consequently spec is no longer fulfilled regarding /B, for
this test is fulfilled. However, since all switches are in normal
operation, known faults are recognized as non-existent faults.
In the third case (Fig. 8) /S2 is set to closed, receiving
consequently the digital 0 in the first step. The corresponding
SFG is identical to the SFG from the second case, whereas now
a well-known error is recognized as an existing error. The Is-
table for the fourth case (Fig. 9) is filled similar to the first
case, so that now spec is fulfilled in the dual rail regarding ¬B,
¬C, ¬/D, ¬/E, ¬B and ¬C.

/D
k
/D

/E

spec
/E

¬/D
k
¬/D

spec
¬/E

¬/E

E

test
¬/E

/¬/E

/k
/D

/E 1
F

spec
F

¬/E

spec
¬F

¬F 1

test
F

/F

F
k
F

G

spec
G

¬F
k
¬F

spec
¬G

¬G

/G

test
G

Sa PI Switch Sn

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G

1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1

Fig. 6. Case 1: Is-table and associated SFG

Sa PI Switch Sn

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G

1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1

Fig. 7. Case 2: Is-table and associated SFG (1st step)

Sa PI Switch Sn

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G

1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1

Fig. 8. Case 3: Is-table and associated SFG (1st step)

Sa PI Switch Sn

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G

0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0

Fig. 9. Case 4: Is-table and associated SFG

In the last case (Fig. 10) /S4 is set to closed, so it receives
consequently the digital 0. Hence, spec is no longer fulfilled
regarding ¬/D, but the test is fulfilled. In this case, it is still to
mention, that /k regarding /D is fulfilled because of the
accordance of its is- and set-values and marked accordingly
(blue). Similarly, other examples can be generated.

Sa PI Switch Sn

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G

0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0

Fig. 10. Case 5: Is-table and associated SFG (1st step)

The examples presented show how to take care of analog
properties like voltage and current. It is known as parametric
measures. Indeed, the methodology is not limited to those
numbers. It can additionally be applied to other physical
constraints as well as all kind of event based digital forms. To
be mentioned should delay, energy and power. The effort there
will also be in the modeling of the underlying structure in an
abstraction of a signal flow graph (SFG).

IV. SUMMARY AND OUTLOOK

The Structure-Preserving Modelling based on Signal Flow

Graph, which is presented in this paper, is a structure-
preserving verification method, which is used to test systems or
circuits for known faults. By Structure-Preserving Modelling,
we mean the consistency of the formally derived function with
the real function actually generated. The verification can be
carried out, with the aid of certain derived rules, in three steps:
from the embedding of the real model into a coding universe,

by specifying a data model as SFG in dual rail, up to the
creation of the submodels (OP, CTRL) in AA.

In comparison to known methods like simulation and
validation the proposed methodology takes care of the direction
of the structure and can therefore preserve the structure of the
device under test within its directed structure. In our
terminology this is called verification. It has the opportunity to
go for algebraic methods that are closed under idempotency, so
called lattices. It also enables to write fast and solid code.
Whether it outperforms up-to-date approaches in the field is not
yet proven.

The TVL created in section III.D can be arranged and
summarized as Quaternary vector lists (QVL) in a next

step. This happens by replacing symbol "" representing
"undefined" in TABLE II to TABLE VII by the format symbol
"x". Thus QVL is encoded in (1, 0, -, x). It is then possible to
program search functions that go through the QVL,
determining certain criteria, such as test coverage, defect
coverage and test severity. However, the QVL generated by a
complex reality can take on great proportions in its
dimensions. Therefore, the database (QVL) should be compiled
(without information loss) line-by-line [7] in order to ensure
lower memory requirements and shorter computing time.

This line-by-line compacted database is for its functional
portion multidimensional regarding columns. The columns
show the dependencies or correlations between the individual
functions (spec, test, k, /k) and their possible fault models.
Thus, it is useful to examine such correlations also from the
aspect of classification methods, which can classify in
dimensions of data sets. This allows the Principal Component
Analysis and the Linear Discriminant Analysis [8].

REFERENCES

[1] Gurkaynak, F.; Villiger, T.; Oetiker, S.; Felber, N.; Kaes-lin, H.;
Fichtner, W.: Functional Test Methodology for Globally-Asynchronous
Locally-Synchronous Systems. 8th Symposium on Asyn. Circuits and
Systems (ACS). (2002)

[2] Uygur, G.; Sattler, S.: Structure Preserving Modeling for Safety Critical
Systems. IEEE 20th International Mixed-Signals Testing Workshop
(IMSTW). (2015)

[3] Siegfried, W.: Operationszustand versus Steuerzustand - eine äußerst
zweckmäßig Unterscheidung. Technische Universität Kaiserslautern.
(2000)

[4] Posthoff, Ch.; Steinbach, B.: Logic Functions and Equations. Springer.
(2004)

[5] Gössel, M.: Automatentheorie für Ingenieure. Akademie Verlag. Berlin.
(1991)

[6] Zander, H.J.: Logischer Entwurf binärer Systeme. VEB Verlag Technik.
Berlin. (1989).

[7] E. McCluskey, Logic Design Principles (Prentice-Hal, Englewood
Cliffs, New Jersey) (1986)

[8] Xie, Y.; Zhang, T.: A fault diagnosis approach using SVM with data
dimension reduction by PCA and LDA method. Chinese Automation
Congress (CAC). pp. 869 - 874. (2015)

