
Boolean Discrete Event Modeling of Circuit Structures 269

3.6. Boolean Discrete Event Modeling of
Circuit Structures

Gürkan Uygur Sebastian M. Sattler

3.6.1. Different Abstraction Levels for Modeling

Considering circuit structures on the transistor level is not only suit-
able for analog design, simulation, and validation, but also allows dis-
crete event abstraction of the digital signal flow on a given structure.
This abstraction can be represented as a Directed Graph (DG),

DG = (N,E) ,

specifying a network (DG) with a set of nodes N and set of directed
edges E ⊆ N ×N . Sometimes a DG is also denoted as a DiGraph.

In more concrete terms of a Signal Flow Graph (SFG), the nodes
n ∈ N represent instantaneous signal information on pins, ports and
wires respectively, labeled as n, and the edges (n, n′) ∈ E specify
the signal flow from the source node n to the target node n′. By
considering an edge (n, n′) as a string nn′ of length two, concatenating
two edges

(n1n
′
1) · (n0n

′
0) ∈ N∗

and strings of nodes

(n1 · · ·n′1) · (n0 · · ·n′0) ∈ N∗

of arbitrary length, respectively, along a path or cycle results in the
SFG. This is a most formally abstract structural view of an arbitrary
circuit.

One of its advantages is that it provides a topological approach observ-
ing and analyzing structural properties. In general, a circuit struc-
ture can be divided into combinational and sequential parts: a circuit
structure implements a combinational logic, if the structure does not
contain any simple cycle, that’s to say an elementary circuit [160].



270 Synthesis, Visualization, and Benchmarks

On the other hand, the structure has to contain at least one simple
cycle—in a topological manner of speaking, a topological hole [406]—
for feeding-back its state information to realize a sequential logic. Of
course, more precisely, we need to factor in more criteria to differ be-
tween combinational and sequential logic. For example, it needs to be
checked whether and when an elementary circuit is alive, so to speak,
whether and when its gates are open, such that the circuit is in a
position to change its logical information content depending on the
input information as well as the fed-backed situation.

An SFG can be considered in more concrete terms of a Signal Flow
Plan (SFP), which consists of modules M i representing (partially de-
fined) functionalities

if : ix 7→ iy ,

whereas the connections (pins, ports, wires) i(x,y) of modules M i

with

i(x,y) = (ix, iy)

=
(
ixn−1, · · · , ixj , · · · , ix1,

ix0,
iym−1, · · · , iyk, · · · , iy1,

iy0

)
and ixj ,

iyk ∈ {1, 0} are associated with the nodes in SFG. Within this
abstraction in general, the elementary functions can be composed to
two types of functions, the state transition function implementing the
sequential logic, and the output function implementing the combina-
tional logic, termed as a Mealy machine [390].

Furthermore, Petri nets are one famous general purpose modeling
technique for discrete event systems with lots of derivatives for special
applications [200]. Signal Transition Graphs (STGs) are a widely used
interpreted Petri net based formalism with transitions labeled with ris-
ing and falling edges for the description of asynchronously fed-backed
circuits, with several existing approaches to their synthesis [278].

Transaction Level Modeling (TLM) together with the modeling lan-
guage SystemC become more and more relevant in system design [64,
151, 369]. Both TLM as a modeling concept and SystemC as a soft-
ware language build a powerful tool for system simulation, synthesis
and verification. The trace theory applied on Petri nets [193] together
with word replacement systems [36] provide a formal language based
computational algebraic modeling and simulation framework.



Boolean Discrete Event Modeling of Circuit Structures 271

3.6.2. Theoretical Foundation

Meaning of the Used Operators, Constants, and Expressions. In
this subsection we introduce the propositional syntax which qualifies
for warranting a unique and consistent relation between propositional
(truth) expressions and specified circuit structure elements [134]. In
this we profit from the basic language elements of Boolean Algebra:
totally and partially defined implication and equivalence. The state-
ment of grounds is inherent: a specification composes only truth state-
ments which are enforced to be fulfilled. Thus, we take the point of
view that everything which is not specified becomes undefined and
termed with the symbol ∗. For total implication and equivalence we
take the symbols → and ↔, respectively, and for partial implication
and equivalence we take the symbols ⇒ and ⇔, respectively. Let h∗
stand for the Boolean expression which represents the disjunction of
all undefined assignments [390]. We declare that t means “true” and
f means “false” per definition.

Propositional Syntax for Structure Specification. Table 3.23 shows
the deployed syntax and semantics for the implication and equivalence
defined for a partial and total case. Table 3.24 defines the specifica-
tion of proposition C for the same two cases. Based on the theoretical
foundation given in Tables 3.23 and 3.24 we will introduce our propo-
sitional syntax for structure specification.

Table 3.23. Definition of the implication and equivalence for two cases

partial total

A B C A⇒ B A⇔ B A→ B A↔ B

f f f t t t t
f t f t ∗ t f
t f f ∗ ∗ f f
t t f t t t t
f f t t t t t
f t t t ∗ t f
t f t ∗ ∗ f f
t t t t t t t



272 Synthesis, Visualization, and Benchmarks

Table 3.24. Partial and total specification of proposition C

partial total

A B C C ⇐ (A⇒ B) C ⇔ (A→ B)

f f f ∗ ∗
f t f ∗ ∗
t f f ∗ t

t t f ∗ ∗
f f t t t

f t t t t

t f t ∗ ∗
t t t t t

Declaration of Propositional Variables Respectively Logical Pins.
We introduce the most elementary language component:

• in formal language view, this is the declaration of a literal;

• in specification view, this is the declaration of propositions with-
out the predefined degree of truth, propositional variables with-
out any predefined information content so to speak;

• in logic view, this is just a pin or wire without information about
its predicate with regard to allowed or undefined logical values,
and further, without information about predefined structural
pin property, e.g., input, output, and state.

The syntax for declaring a literal, propositional variable and pin name,
respectively, denoted as A, is termed as:

t⇐ A . (3.79)

Obviously, t⇐ A is a truth expression warranted by the tautological
implication. Looking closer, we see that the conclusion t is always
truth per definition, hence the premise becomes trivial. Thus, A gets
declared as a propositional variable without any predefined degree of
truth.



Boolean Discrete Event Modeling of Circuit Structures 273

Partially Specified Truth (Tautological) and Proposition (Rule).
The syntax for partially specifying truth proposition C is termed as

C ⇐ (A⇒ B) (3.80)

whereby the premise A is a literal or a conjunction of literals, and
the conclusion B is a literal or a disjunction of literals. Further, the
literal C becomes defined as an output pin with the predicate that C
is specified to be true for ever; in other words, C is undefined to be
false, A∧B 4= ∗. With this in mind, we also denote C ⇐ (A⇒ B) as
tautological proposition C.

Totally Specified Proposition (Test). The syntax for totally speci-
fied proposition C is given as

C ⇔ (A→ B) (3.81)

whereby the premise A is a literal or a conjunction of literals, and
the conclusion B is a literal or a disjunction of literals. Further, the
previously declared literal C becomes defined as an output pin with
the predicate that its degree of truth is determined by the test A→ B.
With this in mind, we also denote C ⇔ (A→ B) as test C.

3.6.3. Syntax for Discrete Event Modeling Based on
Partially and Totally Specified Propositions

Specification of Function if . In terms of a Signal Flow Plan (SFP),
for a module M i with associated function if : ix 7→ iy and the input
vector ix = i(p,k):

• the propositional expression

iy⇐ (ip⇒ ik) (3.82)

specifies the partially defined function

iy = if(ip, ik) = ip ∨ ik = ip ∧ ik (3.83)

whereas the complement of iy is undefined, iy 4= ∗; and



274 Synthesis, Visualization, and Benchmarks

• the propositional expression
iy⇔ (ip→ ik) (3.84)

specifies the totally defined function

iy = if(ip, ik) = ip ∨ ik = ip ∧ ik (3.85)

with the complement of iy is defined as iy = ip ∧ ik .

Figure 3.22 gives an overview of a partially respectively totally defined
function with associated module view:

ip iy

ik

∧
∗

iy = ¬(ip ∧ ¬ik)

iy
4
= ∗
(a) NAND and OR view of iy⇐ (ip⇒ ik)

ip iy

ik

∨
∗

iy = ¬ip ∨ ik
iy
4
= ∗

ip
iy

ik

∧

iy = ¬(ip ∧ ¬ik)

iy = ip ∧ ¬ik

(b) NAND and OR view of iy⇔ (ip→ ik)

ip
iy

ik

∨

iy = ¬ip ∨ ik
iy = ip ∧ ¬ik

Figure 3.22. Module M i with input vector ix = i(p,k) and output vector
iy: (a) partially and (b) totally defined.

Module Concatenation by Pin Connection. The concatenations of
modules in the SFP (e.g., Mu `Mv) and the connections to the pri-



Boolean Discrete Event Modeling of Circuit Structures 275

mary pins can be specified by the coupling function [390]:

k : x 7→ k(x) .

To connect the input pin vxi of Mv with the output pin uyj of Mu,
we term:

vxi ⇔ (t→ uyj) . (3.86)

3.6.4. Use Case: Discrete Event Modeling and
Composition of a CMOS Inverter

Modeling the Pull-Up Transistor. Figure 3.23 (a) shows the pull-up
transistor of a CMOS inverter structure. The power supply pin VDD
is modeled to be clamped to truth:

t⇒ VDD (3.87)

Hence, the pull-up output pin PU is modeled to be truth, if the low-
active gate input Ā is assigned with digital 0, then its degree of truth
is false; otherwise PU is electrically denoted as tri-state and digitally
undefined. Figures 3.23 (b) and (c) show the associated truth table
and block view. Figures 3.23 (d) and (e) state the module view and
the specification:

• module M1 with the pin encoding

1(x,y) = (1x1,
1x0,

1y0) = (VDD, Ā, T̄ ) (3.88)

and instantiation of the test T̄

T̄ ⇔ (VDD → Ā) ; (3.89)

• module M2 with the pin encoding

2(x,y) = (2x1,
2x0,

2y0) = (T̄ , f, PU) (3.90)

and instantiation of the specification PU

PU ⇐ (T̄ ⇒ f) ; and (3.91)



276 Synthesis, Visualization, and Benchmarks

VDD

PU

Ā

(a) circuit

VDD Ā PU

t f t
t t ∗

(b) truth table

∧
VDD

Ā

PU

∗

(c) AND block view

∧ ∧
VDD

Ā

PU

∗f

T̄

(d) NAND module view

(e) partially specified function 2y0 = PU

T̄ ⇔ (VDD → Ā)

PU ⇐ (T̄ ⇒ f)

M1 `M2

1y0 ⇔ (1x1 → 1x0)
2y0 ⇐ (2x1 ⇒ 2x0), 2x0 ⇒ f
2x0 ⇔ (t→ 1y0)

Figure 3.23. Pull-up transistor circuit of a CMOS inverter structure re-
alizing: PU = ¬Ā ∧ VDD, PU

4
= ∗ .

• the module concatenationM1 `M2 by connecting 2x0 with 1y0:

2x0 ⇔ (t→ 1y0) . (3.92)

Table 3.25 gives an overview of the pin specification.

Table 3.25. Pin specification of the pull-up transistor

Syntax Description

VDD ⇒ t High-active pin VDD at source
Ā⇒ t Low-active pin Ā at gate
PU ⇒ t High-active pin PU at drain

t⇒ VDD Power supply pin VDD is clamped to truth



Boolean Discrete Event Modeling of Circuit Structures 277

Modeling the Pull-Down Transistor. Figure 3.24 (a) shows the pull-
down transistor of a CMOS inverter structure. The ground pin GND
is modeled to be clamped to false:

f ⇐ GND . (3.93)

Hence, the pull-down output pin PD is modeled to be false if the high-
active gate input A is assigned with digital 1, then its degree of truth
is true; otherwise PD is electrically denoted as tri-state and digitally
undefined. Figures 3.24 (b) and (c) show the associated truth table
and block view. Figures 3.24 (d) and (e) state the module view and
the specification:

• module M3 with the pin encoding

3(x,y) = (3x1,
3x0,

3y0) = (GND, A, PD) , (3.94)

and instantiation of the specification PD

PD ⇐ (A⇒ GND) . (3.95)

PD

GND

A

(a) circuit

GND A PD

f f ∗
f t f

(b) truth table

∧
A

GND

PD

∗

(c) NAND block view

∧
A

GND

PD

∗

(d) NAND module view

(e) partially specified function 3y0 = PD

PD ⇐ (A⇒ GND) 3y0 ⇐ (3x1 ⇒ 3x0)

Figure 3.24. Pull-down transistor circuit of a CMOS inverter structure
realizing: PD = ¬

(
A ∧ ¬GND

)
, PD

4
= ∗ .



278 Synthesis, Visualization, and Benchmarks

Table 3.26 gives an overview of the pin specification.

Table 3.26. Pin specification of the pull-down transistor

Syntax Description

GND⇒ t Low-active pin GND at source
A⇒ t High-active pin A at gate
PD ⇒ t Low-active pin PD at drain

GND⇒ f Ground pin GND is clamped to false

Parallel Composition of Pull-Up and Pull-Down. Figure 3.25 (a)
shows the CMOS inverter composed of pull-up and pull-down circuits
by electrically wiring the (tri-state) output pins PU and PD. Fur-
ther, the primary input pin A is connected with the low-active gate
input pin Ā of the pull-up transistor and the high-active gate input
pin A of the pull-down transistor. The composition of the electrical
level becomes immediately modeled by parallelly composing the con-
catenated modules M1 `M2 of the pull-up circuit and the module
M3 of the pull-down circuit at Module M4:

M2 `M4 ,

M3 `M4 . (3.96)

At this point, it is essential to consider that the partially specified
proposition PD, which positively encodes the digital value 0, must
not be switched to the Boolean value 0, such that the Boolean super-
imposing (∨) of the components (PU,PD) implementing the CMOS
inverter consistently holds:

¬Ā ∧VDD ∨ ¬
(
A ∧ ¬GND

)
⇒ ¬Ā ∨ ¬A⇒ Ā⇒ X . (3.97)

Figure 3.25 (e) states the specification of the module composition
resulting in the totally defined CMOS inverter:

• module M4 with the pin encoding

4(x,y) = (4x1,
4x0,

4y0) = (PD,PU,X) (3.98)



Boolean Discrete Event Modeling of Circuit Structures 279

VDD

X

A

Ā

A

GND
(a) circuit

VDD

GND

∧

∧

∨

A

Ā

A

∗

∗

PU

PD

X

(b) OR block view

0
1

0 1 1 0 A
0 0 1 1 VDD

∗ f f t

∗ ∗ ∗ t

GND PU,PD

(c) parallelly composed functions

0
1

1 0 A

f t

∗ t

GND X

1 0 A

f t

X

⇒

(d) resolved inverter function

(e) specified parallel composition of pull-up and pull-down

X ⇔ (¬PD → PU)

M2 `M4

M3 `M4

4y0 ⇔ (¬4x1 → 4x0)
4x0 ⇔ (t→ 2y0)
4x1 ⇔ (t→ 3y0)

Figure 3.25. CMOS inverter parallelly composed of pull-up and pull-down
transistors: X = PU ∨ PD.

and instantiation of the test X

X ⇔ (¬PD → PU) ; (3.99)

• module concatenation M2 `M4 by connecting 4x0 with 2y0:

4x0 ⇔ (t→ 2y0) ; (3.100)

• module concatenation M3 `M4 by connecting 4x1 with 3y0:

4x1 ⇔ (t→ 3y0) ; (3.101)



280 Synthesis, Visualization, and Benchmarks

• declaration of the primary input pin A of M0 with the pin en-
coding

0x = (0x0) = A (3.102)

and the pin declaration

t⇐ A ; (3.103)

• module concatenation M0 `M1 by connecting 1x0 with 0x0:

1x0 ⇔ (t→ 0x0) ; (3.104)

• module concatenation M0 `M3 by connecting 3x1 with 0x0:

3x1 ⇔ (t→ 0x0) . (3.105)

3.6.5. Results

In general, circuit structures are electrically composed of tri-state
components. In digital abstraction, a tri-state output pin can be
considered as an output variable of partial logic function, which is un-
defined in the case that the output pin is in a so-called high impedance
state. The problem definition is to deploy a suitable and qualified ab-
straction level for discrete event modeling of such circuit systems. The
most abstraction is given by modeling with Directed Graphs (DGs),
respectively Signal Flow Graphs (SFGs). Signal Flow Plan (SFP)
modeling is more concrete but a still sufficient abstraction level for
the given problem definition.

In this work we developed a propositional syntax for language based
building blocks, respectively modules of partial as well as total func-
tionality. The deployed propositional syntax provides a declaration
of high-active respectively low-active pins. The building blocks allow
us to specify local input respectively output pins as well as the signal
flow on these pins within a module. Additionally, the propositional
syntax supports module concatenation by connecting pins. Thus, we
presented our theoretical foundation for the syntactical specification



Boolean Discrete Event Modeling of Circuit Structures 281

of an SFP. The advantage of the SFP considered is that it allows each
specified module to proceed directly to Boolean functions.

As a use case, we demonstrated the modeling of a Complementary
Metal-Oxide-Semiconductor (CMOS) inverter. For this, we modeled
the pull-up circuit and pull-down circuit, and provided different ab-
straction levels and brought them into relation. Further, we presented
our module composition resulting in the overall SFP modeling of the
use case structure. It is notable that the resulting SFP represents
uniquely and consistently all of the syntactically specified structure
elements. Hence, the SFP exhibits all necessary information for ex-
tracting the abstract SFG level for structural analysis.


