
A Real-World Model of Partially Defined Logic 87

1.6. A Real-World Model of Partially
Defined Logic

Gürkan Uygur Sebastian M. Sattler

1.6.1. Real-World Asynchronous Feedback

Digital circuit systems can be abstracted as a system which defines
a map of input values to output values [390]. In CMOS technology,
the values can be formalized, e.g., by specifying a voltage upper limit
to digitize (respectively abstract) each upper voltage level as a logical
high, abbreviated with the propositional value 1 and by specifying
a voltage lower limit to digitize each lower voltage level as a logical
low, abbreviated with the propositional value 0. Within this abstrac-
tion, Boolean Algebra is the state of the art modeling approach for
formalizing combinational circuit systems. Thus in general, the input
values x ∈ x can be encoded by the binary (2-valued) input vec-
tor x = (xn−1, . . . , xi, . . . , x1, x0) of length n, xi ∈ {1, 0}, and the
output values y ∈ y can be encoded by the binary output vector
y = (ym−1, . . . , yj , . . . , y1, y0) of length m, yj ∈ {1, 0}. Then a com-
binational function F can be termed as

F : Bn → Bm , F : x 7→ F (x) , y = F (x) , (1.28)

saying that F maps source x to target y by uniquely assigning x ∈ Bn
to y ∈ Bm. Further, function F (x) is said to be totally defined (in
short total) if and only if F (x) is defined for all x ∈ Bn otherwise
F (x) is said to be partially defined (in short partial).

In the state of the art literature, a most common digital circuit system
can be modeled as a finite state machine having Mealy architecture
[390]. A Mealy machine is composed of two combinational structures,
one for implementing the state transition function δ : (x, z) 7→ δ(x, z)
with state value z ∈ B|z|, another for implementing the output func-
tion λ : (x, z) 7→ y. In case the output function µ only depends
on z, µ : z 7→ y, the model describes a Moore machine. And, if
trivially feeding z, 1(z) = y with µ : z 7→ 1(z), then the model de-
scribes a Medwedew machine. The sequential logic system becomes

88 Models, Methods, and Techniques

realized by asynchronously feeding the state value z back to the input
z; this successfully works if δ is functionally stabilized, i.e., the fol-
lowing predicate logical expression holds: z = δ(x, z). At this point,
it should be noted, that using the different symbols az and nz for old
and new state values can sometimes be helpful for mathematically
modeling sequential logic as a combinational function, but in reality,
the fully asynchronously feedback sequential structure determines the
state value z by superimposing signals on the feedback.

In a case where δ is not functionally stabilized, superimposed signals
can lead to hazardous glitches, metastability and races, respectively.
Within the digital abstraction, such analog feedback effects are not
determined, staying undefined associated with the symbol ∗. In terms
of digital abstraction, for state transition function δ, ∗ means that
the next state value δ(x, z) is not defined, δ(x, z) = ∗. Hence in gen-
eral, a real-world asynchronous feedback structure realizing a discrete
event based sequential logic module clones a partially defined state
transition function δ; so in general, a digital circuit system realizes a
partially defined function.

1.6.2. Related Topics

Safety critical systems increasingly profit from integrated circuit tech-
nology, which bundle analog-to-digital functionality with high effi-
ciency and quality at low cost. From the view of safety and appli-
cation, determined and also efficient components are needed. Ana-
log is efficient but ambiguous, contrastingly digital is determined by
(clocked) synchronization but is thus inefficient. Hence, there is a re-
quirement to couple the advantages of becoming deterministic as well
as efficient [121]. At this point, asynchronous circuit systems arise
as a dedicated candidate for safety-critical applications. There is a
renewed and increasing interest in asynchronous design; emphasis is
shifting from asynchronous-in-the-small to asynchronous Very-Large-
Scale Integration (VLSI). Asynchronous VLSI is progressing from a
fashionable academic research topic to a viable solution for a number
of VLSI design challenges [371]. The inherent reason is that the asyn-
chronous feedback is provided with lots of potential benefits such as
improved system performance, modular design, low power consump-

A Real-World Model of Partially Defined Logic 89

tion and reduced electromagnetic emissions [135, 299]. Further es-
sential characteristics are that the asynchronous circuit systems show
no problems with clock skew and related subtle issues, and are fun-
damentally more tolerant of voltage, temperature and manufacturing
process variations [174, 226, 278]. It is remarkable that the interna-
tional technology roadmap for semiconductors (report on design [155])
predicts that up to 40% of the designs will be driven by handshake
clocking (i.e., asynchronous) by 2020 [174].

Due to the increasing complexity of structure and functionality the
test of the real-world structure also becomes more and more complex,
hence the formal assignment between the (virtual) functionality and
the (real-world) structure becomes more and more critical. This con-
stellation leads to an ever-increasing challenge particularly regarding
safety critical circuits and systems. Analog destructive signal super-
imposing effects such as metastability and race, respectively, most
often result in a delay reaction at the output, which in a synchronous
circuit potentially violates the timing assumption [239]. This also
means that due to the increasing impact of asynchronous feedback ef-
fects, the modeling inconsistencies—in state of the art so-called “don’t
cares”—become more and more relevant with regard to the modeled
(virtual) function and the real-world structure. These inconsistencies
play an important role particularly on (elementary) structures stor-
ing information, e.g., latches up to complex automata. The focus
of this section is to establish a formal methodology to warrant the
match between the (partially) specified function and the real world
asynchronous feedback structure.

1.6.3. Use Case: Low-Active RS-Latch

Let us look at an elementary non-trivial asynchronous fed-backed cir-
cuit structure, the low-active RS-latch shown in Figure 1.20 (a). It
can be interpreted on different abstraction levels. In the logical view,
each combination (x, z) determines the next state δ(x, z). The associ-
ated z-equations are given as totally defined combinational functions.
In the digital view, metastable state values, which can trigger races,
are not accepted as the digital state. For a more detailed characteriza-
tion, let us consider the circuit structure of the low-active RS-latch as a

90 Models, Methods, and Techniques

Q1

Q0

S

R

(a)

nQ1 = 1

nQ0 = 1

S = 1
aQ0 = 0

aQ1 = 0

R = 0

(b)

nQ1 = 0

nQ0 = 1

S = 1
aQ0 = 1

aQ1 = 0

R = 0

Figure 1.20. Low-active RS-latch and metastability: (a) circuit structure,
(b) different scenarios resulting in metastability.

Device Under Test (DUT): the following test pattern of simultaneous
signal transitions (sequence) [0→ 1→ 1→ · · · , 0→ 1→ 1→ · · ·] on
logical input variables (S̄, R̄) triggers a logical oscillation (sequence)
[1 → 0 → 1 → 0 → · · · , 1 → 0 → 1 → 0 → · · ·] on logical state vari-
ables (Q1, Q0); contrastingly, the same test pattern on digital real-
world input pins (S,R) triggers a race condition resulting in non-
determined digital signals on real-world state pins (Q1, Q0), and on
analog real-world state pins (Q1, Q0), it results in destructive signal
superimposing, which then can be observed as concurring discharging
and precharging voltage signal curves (see Figure 1.21).

meta-stable (race)stable

Vdd

0V

VTH

signals (Q1, Q0) who has won?

dis-pre-chargingstable

meta-stable (race)stable

Vdd

0V

VTH

signals (Q1, Q0) who has won?

dis-pre-chargingstable

Figure 1.21. Race condition resulting in non-determined (digital) signals
respectively (analog) dis-pre-charging voltage signal on real-
world state pins (Q1, Q0).

A Real-World Model of Partially Defined Logic 91

Table 1.16. Logical vs. digital switching table of the low-active RS-latch

combinational logical digital
aQ1

aQ0 S R nQ1
nQ0

nQ1
nQ0 comment for digital

0 0 0 0 1 1 ∗ ∗ metastable
0 0 0 1 1 1 ∗ 1 metastable
0 0 1 0 1 1 1 ∗ metastable
0 0 1 1 1 1 1 1 stable state

0 1 0 0 0 1 0 1 stable state (hold)
0 1 0 1 0 1 0 1 stable state(hold)
0 1 1 0 1 1 1 1 transient state
0 1 1 1 1 1 1 1 stable state

1 0 0 0 1 0 1 0 stable state (hold)
1 0 0 1 1 1 1 1 transient state
1 0 1 0 1 0 1 0 stable state (hold)
1 0 1 1 1 1 1 1 stable state

1 1 0 0 0 0 ∗ ∗ metastable
1 1 0 1 0 1 0 1 stable state (reset)
1 1 1 0 1 0 1 0 stable state (set)
1 1 1 1 1 1 1 1 stable state

Similarly, the initial condition (Q1, Q0, S̄, R̄) = [0011] also triggers a
race condition. (Q1, Q0, S̄, R̄) = [0010] triggers a metastability and
makes Q1 undefined. Figure 1.20 (b) shows different scenarios re-
sulting in metastability. Similarly, (Q1, Q0, S̄, R̄) = [0001] triggers a
metastability and makes Q0 undefined. Hence, it results in the non-
reduced structure preserving digital switching table, see Table 1.16.

All combinational inputs (aQ1,
aQ0, S,R) resulting in digitally un-

defined (symbol ∗) can be encoded and termed as a Ternary Vec-
tor List (TVL) [46, 342, 390] and be further compressed (resolved),
see (1.29); thus ∗̄ means all combinations result in a defined state
transition, see (1.30). Now, all reachable states [00], [01], [10] and
[11] formally assigned to (nQ1,

nQ0) can be calculated by differenti-
ating3 all ∗ from the logical model, which then result in digital state

3One should notice that in TVL calculus differentiating ∗ is equivalent to inter-
secting with ∗̄.

92 Models, Methods, and Techniques

equations, see Equations (1.31)−(1.34). Hence, after appending all
state equations to one TVL with header (aQ1,

aQ0, S,R,
nQ1,

nQ0), it
results in a TVL encoded automaton graph AG respectively and all
defined state transitions of associated digital automaton, see Equation
(1.35).

∗ =

aQ1
aQ0 S R

0 0 0 0

0 0 0 1

0 0 1 0

1 1 0 0

=

aQ1

aQ0 S R

0 0 0 −
0 0 − 0

1 1 0 0

 (1.29)

∗̄ =

aQ1
aQ0 S R

0 1 − −
1 0 − −
1 − 1 −
− − 1 1

1 − − 1

 (1.30)

[nQ1
nQ0

1 1

]
=

aQ1

aQ0 S R

1 0 − 1

0 1 1 −
− − 1 1

 (1.31)

[
1 0

]
=

[
1 0 − 0

1 − 1 0

]
(1.32)

[
0 1

]
=

[
0 1 0 −
− 1 0 1

]
(1.33)

[
0 0

]
= 0 (1.34)

AG =

[
010−
−101

]
[01] ∨

[
10− 0
1− 10

]
[10] ∨

10− 1
011−
−− 11

 [11]

A Real-World Model of Partially Defined Logic 93

AG =

aQ1
aQ0 S R nQ1

nQ0

0 1 0 − 0 1

− 1 0 1 0 1

1 0 − 0 1 0

1 − 1 0 1 0

1 0 − 1 1 1

0 1 1 − 1 1

− − 1 1 1 1

(1.35)

1.6.4. Functionally Stabilized Dual-Rail
Implementation

The case above shows that the digital state transition function

δ : (x, z) 7→ δ(x, z)

with x = (S,R) and z = (Q1, Q0) is partially defined. For creating the
associated Signal Flow Plan (SFP) in gate logic view, we use the dual-
rail approach, which means that each logical positive assignment gets
termed by the associated positive literal (the positive rail) and each
logical negative assignment gets termed by the associated negative
literal (the positively encoded negative rail). Hence, we are speaking
unary (1-valued modeling) for each rail Q1 ∈ {1}, Q̄1 ∈ {1}, Q0 ∈ {1},
Q̄0 ∈ {1}, see Equations (1.36) and (1.37):

(
Q1, Q̄1

)
=

1 0−−
−−1 1
−1 1−

 , [0 10−
−10 1

] , (1.36)

(
Q0, Q̄0

)
=

0 1−−
−−1 1
1−−1

 , [1 0−0
1−1 0

] . (1.37)

Now, the associated SFP in gate logic can be deduced from the TVL
of each rail, which encodes the gate logic in Disjunctive Normal Form
(DNF): one line (ternary vector) of a TVL encodes the conjunction of
literals, whereas the TVL encodes the disjunction of the conjunctions.

94 Models, Methods, and Techniques

Functionally Stabilized Parallel Composition. Each dual-rail needs
to be parallelly composed (+) to its corresponding single-rail. For this
we will use our programmable JK-/RS-buffer. The behavior of this
buffer is shown in Figure 1.22:

0 0 0 0 0 1
0 1 1 0 1 1
1 1 1 0 0 1
1 0 0 0 1 1

0 1 1 0 K,R
0 0 1 1 J, S

CS aB nB

(b)

CS J, S K,R B ∗ comment
0 0 0 B 1 store
0 0 1 0 0 reset
0 1 0 1 0 set
0 1 1 B 1 store
1 0 0 B 1 store
1 0 1 0 0 reset
1 1 0 1 0 set
1 1 1 B 1 toggle(a)

Figure 1.22. Behavior of the programmable JK-/RS-Buffer: (a) function
table, (b) Karnaugh map.

Figure 1.23 depicts the associated structure of the circuit together
with functions on selected points:

VDD

GND

X

J, S

K,R

B

J ∧K

CS

weak

0 0 0 1 0 0
0 1 1 1 1 0
1 1 1 1 0 0
1 0 0 1 1 0

0 1 1 0 K,R
0 0 1 1 J, S

CSX X = B

0 0 1 0 1 1
0 1 0 0 0 1
1 1 0 0 1 1
1 0 1 0 0 1

0 1 1 0 K,R
0 0 1 1 J, S

CSX B

Figure 1.23. Structure of the programmable JK-/RS-buffer.

A Real-World Model of Partially Defined Logic 95

For implementation of the fully asynchronous parallel dual-rail com-
position, we program the RS-buffer by assigning the chip select pin CS
with digital 0, CS = [0], which deactivates the JK-rail and activates
the RS-rail, see Figure 1.23.

To implement the SFP to be functionally stabilized, we deploy the RS-
buffer composed of a tri-state front circuit to catch dual-rail signals
and a fully asynchronously feedback babysitter to safely set respec-
tively re-set the fed state signal; in the case of ∗ input, the front circuit
gets deactivated (push and pull transistors are non-conductive result-
ing in high impedance) such that the babysitter safely holds the last
defined state signal. Figure 1.24 (a) shows the function table, and the
derived Karnaugh map, as well as the algebraic expression for hazard-
free implementation of this RS-buffer in gate logic. Figure 1.24 (b)
depicts the transistor implementation of the asynchronous feedback
RS-Buffer [368]; the minimum transistors are labeled with M (min-
imum), and the weak transistors are labeled with L (long). Figure
1.24 (c) shows the switching symbol used to refer to the functionally
stabilized parallel RS-buffer.

S R B ∗ comment
0 0 B 1 store
0 1 0 0 reset
1 0 1 0 set
1 1 B 1 store

0 0 0 0 1
1 1 0 1 1

0 1 1 0 R
0 0 1 1 S

aB nB

nB = S R ∨ S aB ∨R aB

(a)

VDD

GND

Y1

S

R

B

M

L

L

M

G
N
D

V
D

D

(b)

S

R

B

∗̄
(c)

Figure 1.24. RS-Buffer: (a) function, (b) circuit structure, (c) switching
symbol.

The RS-buffer in Figure 1.25 is additionally provided with the ∗̄ out-
put, which realizes the test output for monitoring any violation of the
specified operation.

96 Models, Methods, and Techniques

S

R

B

∗̄

S

R

B

∗̄

Q1

∗

Q0

∗

RS

Figure 1.25. Block diagram of the parallel composed partial low-active
RS-latch.

1.6.5. Results

The problem definition is that asynchronously fed-backed circuitry in-
stantaneously underlies analogue principles. Therefore interfering sig-
nals can lead to hazardous glitches, metastability as well as races. In
digital abstraction, such analog effects are undefined signals. Hence,
generally speaking, a digital circuit system represents a partially de-
fined function. This is contrary in the state of the art modeling where
people mostly deploy a formalism and optimization approach that
is based on a total and determined function, hard to derive from a
given structure. The inconsistency between a formally derived (vir-
tual) function and its underlying real-world structure is obvious. At
this point the inherent challenging problem definition arises, that—

A Real-World Model of Partially Defined Logic 97

especially for the Quality Assurance (QA) of safety critical circuits
and systems—not only is any solution itself sufficient but also that a
reliably reproducible traceability of each step that results in the cor-
rect solution is needed in order to warrant a structure that preserves
the axiomatic solution; plainly speaking, the correct solution depends
on the correct construction of the solution.

As an alternative solution to the problem definition above, we of-
fer our approach for real-world modeling of partially defined logic.
Instead of using don’t cares for modeling undefined inputs, we imple-
ment partiality by deploying a standardized sequential circuit struc-
ture (Moore). It doesn’t transmit the formally undefined inputs by
generating a tristate behavior for incoming undefined signals. The
analog effects triggered at this structural weakness can now—within
digital abstraction—be interpreted as metastability and race, respec-
tively. They are undefined values in digital view. For the unique
encoding of partial logic we deployed the positive logic on positive as
well as negative signals. These dual rails in addition with the RS-
buffer—provided with additional output for monitoring any violation
of a specified operation—warrant a function stable implementation of
a partially defined logic.

