
Mealy-to-Moore Transformation
Mustafa Özgül, Florian Deeg, Sebastian M. Sattler

Lehrstuhl für Zuverlässige Schaltungen und Systeme
Friedrich-Alexander-Universität Erlangenen-Nürnberg

Paul-Gordan-Str. 5, 91052 Erlangen, Deutschland
Email: {mustafa.oezguel,florian.deeg,sebastian.sattler}@fau.de

Abstract

In this paper we will show a method for transforming an asynchronously feed-backed Mealy machine into an equivalent
Moore machine under use of dual-rail logic and the RS-Buffer. The resulting machine will be safe, stable and reproducable. We
will further present a use-case to demonstrate the before mentioned transformation.

Keywords - asynchronous feedback, functional safety, stabilization, hazard-free, parallel de-composition, dual-rail

I. INTRODUCTION

ASYNCHRONOUS CIRCUITS are gaining significant
importance in circuit design. This growing need for

asynchronous circuits results from a number of benefits.
These are that asynchronous circuits have a better system
performance, lower power consumption and reduced elec-
tromagnetic emissions. Also asynchronous circuits can be
modularly designed and have no problems with clock skew
and related issues [4]. This paper presents the transformation
of a Mealy machine into an equivalent Moore machine for
function stabilized modeling of asynchronous automata. The
Mealy machine with the state transfer function δ and the
output function λ , see figure 1 be given. Each Mealy machine
can be transformed into an equivalent Moore machine [3] for
example by increasing the arity of δ by |x| and coding it
with x, z′ = (z,x) with δ ′(z′,x) 7→ (δ (z,x),x), and the output
function is only dependent on the new state variable z′ with
µ : (z′) 7→ µ(z′).
By comparing the two machines the pros and cons can be
shown. Therefore the idea of transforming the machines into
each other to profit from the benefits of both is obvious. Mealy
machines have the advantage of requiring less states since one
state can produce a number of different outputs in combination
with the input. A Moore machine’s state on the other hand
only produces one output. A Mealy machine is also faster
by reacting directly to the input. This feature however is not
always wanted, since it can lead to undesired outputs (e.g.
hazards, glitches) when the input is variable. A Moore machine
is more stable in this regard, since it only indirectly reacts to
input changes. The output only changes when transferring into
the next state. Transforming a Mealy machine into a Moore
machine is therefore useful in case a direct dependence on the
input is to be avoided [2].
In the paper the transformation of a Mealy machine into a
Moore machine is presented. In this transformation the state
of the transformed Moore machine is feedbacked at the output.
In order to set the correct state at the input of the state
transfer function of the Moore, a function will be integrated.
This function will generate the initial state from the output
signal of the Mealy machine. For function stable asynchronous

machines this can be done via dual-rail logic and the RS-
Buffer [4]. With the method presented in this article, function
stable circuit parts can be abstracted as blocks and moved over
other blocks at will. With this method, individual machines
can be strung together to realize complex circuits for safety
relevant applications.

II. THEORY

This paper describes the underlying theory of the transfor-
mation and provides an illustrative example.

δ

λ
z

x
x

y

Figure 1: Fully asynchronous Mealy machine

Figure 1 shows a fully asynchronous Mealy machine. The
branches entering a node in the graph should end reflexively,
so that only transient states are allowed which are conscious
and triggered from the outside [2]. To consider all branches
of the Mealy machine as locally reflexively concluded, the
feedback should be moved over λ , making the output y the
feedback. In order to set the correct state z for the transfer
function δ , a function λ−1 is realized. This function generates
the reduced state z from the feedback y. This equivalent
transformation is outlined in figure 2.

λ -1

δ

λ

z
z

x
x

x

y

Figure 2: Equivalent transformation

The following applies:

δ (z,x) = z

δ
(
λ

-1(y,x),x
)
= λ

-1(y,x)

λ
(
δ
(
λ

-1(y,x),x
)
,x
)
= y

mit λ
(
λ

-1(y,x),x
)
= y

A. Dual-rail logic

For the implementation in dual-rail logic [1, 5], the fully
asynchronous circuit from figure 1 will be divided in the 1-
and 0-share. This is done by partitioning the state transfer
function and the output function, see figure 3.

δ z

δz

+

λ y

λy

+

y
z

z = (z,z)

z
y

x

x

x

x

(y,y) = y

Figure 3: Mealy realized in dual-rail logic

The functions δ and λ are each w.l.o.g. realized in two blocks
δ = (δz,δ z) and λ = (λz,λ z). In order to guarantee this secure
dual rail structure, RS-Buffers [4] are used.

Λy
e uy

∆z
e uz

Λz

Λz

Λz

Figure 4: Venn diagram of 1-states in 1-outputs

The stabilized 1-states, ∆z
c sz, are transformed into 1-

outputs, Λy
c sy. The corresponding Venn diagram of the

stabilized 1-states in 1-outputs can be seen in figure 4. 1-states
that appear as 0-outputs are declared as Λz, 0-states which
appear as 1-outputs are declared as Λz. The 1-partition is
composed of:

Λy
c sλy(δ z)+λy(δ z)+λ y(δ z)

y u eΛy

∆z
e uz

Λz

Λz

Λz

Figure 5: Venn diagram of 0-states in 0-outputs

The stabilized 0-states, ∆z
c sz, are transformed into 0-

outputs, Λy
c sy. The corresponding Venn diagram of the

0-states in 0-outputs is shown in figure 5. 0-states which
appear as 1-outputs are declared as Λz, 1-states which appear
as 0-outputs are declared as Λz. The 0-partition is composed
of:

Λy
c sλ y(δ z)+λ y(δ z)+λy(δ z)

III. USE-CASE

For a better understanding, an example is shown below. The
Mealy machine from figure 6 be given

δ (z,x) = zx0x1∨ x1

= z(x0∨ x1)︸ ︷︷ ︸
z

∨zx1

λ (z,x) = zx0x1∨ x0

= z(x1∨ x0)︸ ︷︷ ︸
y

∨zx0

with the stabilized 1-states of z, ∆z
c sz(x0 ∨ x1), the sta-

bilized 1-states Λz
c szx1, which appear as 1-outputs, the

stabilized 1-states Λz
c szx0x1, which appear as 0-outputs and

the stabilized 0-states Λz
c szx0x1, which appear as 1-outputs

δ x0

x1

z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

λ x0

x1

z

1 0 0 1

1 0 1 1

0 1 23

4 5 67

Figure 6: State transfer function and output

and the stabilized 0-states of z, ∆z
c szx1, the stabilized 0-

states Λz
c szx0x1, which appear as 0-outputs, the stabilized

0-states Λz
c szx0x1, which appear as 1-outputs and the

stabilized 1-states Λz
c szx0x1, which appear as 0-outputs.

z := λ
−1
z (y,x)+¬λ

−1
z (y,x) = z+¬z

respectively

(z,z) := (δ ∧ (z∨λ),δ ∧ (z∨λ))

A. RS-Buffer

The RS-Buffer used and its circuit symbol are represented
in figure 7 and 8 and

VDD

VDD

M

L

L

M

VDD

S

R

B

Figure 7: RS-Buffer (schematic)

+ B

S

R

Figure 8: Circuit symbol of the used RS-Buffer

its logic table is specified in table 1. This RS-Buffer is used to
guarantee handshaking and synchronization, especially with
asynchronous feedbacked structures. Overlaid signals can lead
to dangerous errors, meta stabilities and races. Therefore these
dangers must be intercepted reliably. The recommended RS-
Buffer is suitable for this task. On the transistor level it consists
of a first stage (tri-state-combinationals) and a second stage
(so called babysitter). The tri-state control structure provides,
depending on the input, either a set signal. a reset signal or
a high resistive closure to the babysitter. The babysitter itself
consists of two complementary loops. If no signal is pending
(high resistive closure) the babysitter saves the last state. The
RS-Buffer is used to let every constructive superposition of
signals pass, while the positive superposition triggers the
setting signal and the negative superposition triggers the
resetting signal or the last defined signal is held [5].

R 0 0 1 1
S 0 1 0 1
B B 1 0 B

Table 1: Truth table of the RS-Buffer

The formula for the output B is therefore B := R(B∨ S)∨
S(B∨R) = RS∨RB∨SB.

B. 1-dimensional Example

For x = (x1,x0), y = (y) and z = (z) the transformation of
the Mealy machine (X ,Y,Z,δ ,λ) with the state transformation
function and output function

δ (z,x) = zx0x1∨ x1 λ (z,x) = zx0x1∨ x0

in figure 9, figure 10 respectively will be executed.

∧
∨

∧
∨x1

x0x1
x1

x0

x0

y

Figure 9: Mealy machine before the transformation

δ x0

x1

z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

λ x0

x1

z

1 0 0 1

1 0 1 1

0 1 23

4 5 67

Figure 10: ... and the KV-diagrams

δ z x0

x1

z

∗ ∗ ∗ ∗

∗ 1 1 1

0 1 23

4 5 67

δ z x0

x1

z

1 1 ∗ ∗

∗ ∗ ∗ ∗

0 1 23

4 5 67

Figure 11: State transfer function (δ z,δ z)

λy
x0

x1

z

1 ∗ ∗ ∗

∗ ∗ 1 1

0 1 23

4 5 67

λ y
x0

x1

z

∗ 1 ∗ ∗

∗ 1 ∗ ∗

0 1 23

4 5 67

Figure 12: Output (λy,λ y)

The function δ will be partitioned in the stabilized 1-states
δ z and the stabilized 0-states δ z in propositional logic in the
following KV-diagrams, see figure 11. Same applies for the
output function, represented in figure 12.
For the function λ−1 the following expression applies

z := z(z(x0∨ x1)∨ zx1)+ z(x1) = x1

z := zx0x1 + zx0x1 = x0x1

with the illustration in the KV-diagram in figure 13.

z
x0

x1

y

∗ 0 1 1

∗ 0 1 1

0 1 23

4 5 67

z
x0

x1

y

1 0 ∗ ∗

1 0 ∗ ∗

0 1 23

4 5 67

Figure 13: KV-diagrams of z and z

The partial truth table of the automaton is represented in table
2. The resulting automaton can be seen in figure 14. The
example showed, that there is no need of feeding y back,
because the interim feedback of the RS-Buffer either keeps
the current state or changes of the state occur via the input
signals. Therefore there is no actual need for a feedbacked y
for generating λ−1.
For a better understanding we will further introduce an exam-
ple of a mealy to moore transformation of a mealy machine
with a 2-dimensional state transfer function.

z x1 x0 δ δ z δ z λ λy λ y z z z
0 0 0 0 ∗ 1 1 1 ∗ 0 1 0
0 0 1 0 ∗ 1 0 ∗ 1 ∗ 0 z
0 1 0 1 ∗ ∗ 1 ∗ ∗ 1 ∗ 1
0 1 1 1 ∗ ∗ 0 ∗ ∗ 1 ∗ 1
1 0 0 0 ∗ ∗ 1 ∗ ∗ ∗ 1 0
1 0 1 1 1 ∗ 0 ∗ 1 0 0 z
1 1 0 1 1 ∗ 1 1 ∗ 1 ∗ 1
1 1 1 1 1 ∗ 1 1 ∗ 1 ∗ 1

Table 2: Partial truth table of the transformed 1-dimensional automaton

+

∧

∨
∧

∨

∧

z

x0

zx1

x1

x0

y

x1

x1

x0 λ−1

δ

λ

Figure 14: 1-dimensional automaton after the transformation, z′ = (z,x)

C. 2-dimensional example

For x=(x1,x0), y=(y) and z=(z1,z0) the transformation of
the Mealy machine (X ,Y,Z,δ ,λ) with the state transformation
functions and output function

δ0(z,x) = z1x1∨ z0x1x0 δ1(z,x) = z1x0∨ x1x0

λ (z,x) = z1x1x0∨ z1z0x1x0

in figure 15, figure 16 respectively will be executed.

∧

∧

∧

∧

∨

∨

∧

∧

∨

x1
x0

x1

x0

z0

z1x1

x0

y

x1
x0

x1x0

δ1

δ0

λ

Figure 15: Mealy machine before the transformation

z0 x0

x1

z0

z1

0 0 0 0

0 0 1 0

1 1 1 0

1 1 0 0

0 1 23

4 5 67

8 9 1011

12 13 1415

z1 x0

x1

z0

z1

0 0 1 0

0 0 1 0

0 1 1 0

0 1 1 0

0 1 23

4 5 67

8 9 1011

12 13 1415

Figure 16: ... and the KV-diagrams

The compacted states z0 and z1 can now be calculated with
z0=δz0 (z1,x) and z1=δz1 (z0,x) respectively. The compacted KV-
diagram of z0 is illustrated in figure 17.

δz0 x0

x1

z1

0 0 z0 0

1 1 z0 0

0 1 23

4 5 67

λ−1
z0 x0

x1

z1

∗ ∗ 0 ∗

1 1 0 ∗

0 1 23

4 5 67

λ−1z0 x0

x1

z1

1 1 0 1

∗ ∗ 0 1

0 1 23

4 5 67

Figure 17: Compacted functions δz0 and λ−1 of δz0

δz1 x0

x1

z0

0 z1 1 0

0 z1 1 0

0 1 23

4 5 67

λ−1
z1 x0

x1

z0

∗ 0 1 ∗

∗ 0 1 ∗

0 1 23

4 5 67

λ−1z1 x0

x1

z0

1 0 ∗ 1

1 0 ∗ 1

0 1 23

4 5 67

Figure 18: Compacted functions δz1 and λ−1 of δz1

The function δz0 will now be partitioned in three parts. There
is one part, where the 1-state of the state transfer function is
independent from z0 (marked by continuous lines in the KV-
diagram), the second part is the 0-state, which is independent
from z0 (marked by dashed lines) and the configuration of
x which is dependent on the last state z0 where the interim
feedback of the RS-Buffer will keep the old state (0-values in
the KV-diagram), see figure 17. Same applies for δz1 , see 18.
The reduced states z0, z0, z1, z1 can now be calculated:

λ
−1
z0

(z1,x)= z1x1∨¬(x1x0) λ−1z0
(z1,x)= z1x1∨x1x0∨¬(x1x0)

z0 = λ
−1
z0

(z1,x)+¬(λ−1z0
(z1,x))

λ
−1
z1

(z0,x) = x1x0∨¬(x1x0) λ−1z1
(z0,x) = x0∨¬(x1x0)

z1 = λ
−1
z1

(z0,x)+¬(λ−1z1
(z0,x))

The partial truth table of the automation is represented in table
3. The resulting automaton can be seen in figure 19.

z1 z0 x1 x0 δ1 δ0 λ z1 z1 z0 z0 z1 z0

0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 ∗ ∗ 0 1 z1 0
0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 1 1 1 0 0 1 0 ∗ ∗ 1 z0
0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 ∗ ∗ 0 1 z1 0
0 1 1 0 0 0 0 0 1 0 1 0 0
0 1 1 1 1 1 0 1 0 ∗ ∗ 1 z0
1 0 0 0 0 1 1 0 1 1 0 0 1
1 0 0 1 1 1 1 ∗ ∗ 1 0 z1 1
1 0 1 0 0 0 0 0 1 0 1 0 0
1 0 1 1 1 0 0 1 0 ∗ ∗ 1 z0
1 1 0 0 0 1 1 0 1 1 0 0 1
1 1 0 1 1 1 0 ∗ ∗ 1 0 z1 1
1 1 1 0 0 0 0 0 1 0 1 0 0
1 1 1 1 1 1 0 1 0 ∗ ∗ 1 z0

Table 3: Partial truth table of the transformed automaton

∧

∧

∧

∧

∨

∨

∧

∧

∨

+

+

∧

∧

∨

∧

∧
x1
x0

x1

x0

z0

z1x1

x0

z0

x1

x0

x0

z1

x1

x1

x1

x0

y

x1
x0

x1x0

δ1

δ0

λ

λ−1
z1

λ−1
z0

Figure 19: Automaton after the transformation, z’=(z,x)

IV. CONCLUSION AND FUTURE WORK

The Moore transformation of a function stable asynchronous
Mealy machine in dual-rail logic under the use of the RS-
buffer was exemplarily shown in this paper. The feedback
of the state was moved over the output function λ of the
Mealy machine and correctly created at the input of δ via the
function λ−1. The part of δ that is stabilized in z can be held
in the interim feedback of λ−1 when needed and the transitive
part, which is only dependent on the input variables x, will be
generated by the combinationals. The simple 2-dimensional
example was consciously chosen to show that this method is
also applicable for more dimensions. It shows a structure that
is asynchronously feedbacked and seems to end within a finite
amount of steps in a stable state. There is need for further
investigation of more complex and more-dimensional Mealy
machines to define a general n-dimensional procedure.

REFERENCES

[1] G. Uygur, S. M. Sattler: Pin-Type Based VLSI Partition-
ing. AmE 2014, Dortmund.

[2] M. Ipek: Eine Testfallspezifikation für das funktionsori-
entierte Testen von reaktiven eingebetteten Systemen im
Automobilen Bereich. [Ph.D. Dissertation]. Universität
Kaiserslautern, Mai 2011.

[3] U. Hebisch: Formale Sprache und Automatentheorie WS
13/14 page 45-50.
http://www.mathe.tu-freiberg.de/ hebisch/
skripte/auttheorie/formsprach.pdf

[4] G. Uygur, S. M. Sattler: A Real-World Model of Partially
Defined Logic. 12th International Workshop on Boolean
Problems 2016, Freiberg.

[5] G. Uygur, S. M. Sattler: A New Approach for Modelling
Inconsistencies in Digital-Assisted Analog Design. Journal
of Electronic Testing 2016, Page 498-503.

