
Mealy-to-Moore transformation in safety-critical systems
Mustafa Özgül, Florian Deeg, Sebastian M. Sattler
Lehrstuhl für Zuverlässige Schaltungen und Systeme, Friedrich-Alexander-Universität Erlangenen-Nürnberg, Paul-Gordan-
Str. 5, 91052 Erlangen, Deutschland, Email: {mustafa.oezguel,florian.deeg,sebastian.sattler}@fau.de

Abstract

In this paper we will show a method for transforming an asynchronously feed-backed Mealy machine into an equivalent
Moore machine under use of dual-rail logic and the RS-Buffer. The resulting machine will be safe, stable and reproduca-
ble. We will further present a use-case to demonstrate the before mentioned transformation.

Keywords - asynchronous feedback, functional safety, stabilization, hazard-free, parallel de-composition, dual-rail

1 Introduction

AUTOMOTIVE is a safety critical application with high
need of functional safety, under extreme operating

respectively environmental conditions and parameter va-
riations [1,2]. This growing need and also information and
communication technologies for automotive lead to new
applications, which can be integrated into the system by
innovative ideas and solutions under the use of microelec-
tronics. The used micro electronic (electronic control unit,
ECU) can take on complex tasks, such as steering and si-
gnal processing. An ECU can be formally abstracted to a
Mealy machine [3] with the state transfer function δ and
the output function λ , see figure 1. Each Mealy machine
can be transformed into an equivalent Moore machine [3]
for example by increasing the arity of δ by |x| and coding it
with x, z′ = (z,x) with δ ′(z′,x) 7→ (δ (z,x),x), and the out-
put function is only dependent on the new state variable z′:
µ : (z′) 7→ µ(z′).
By comparing the two machines pros and cons can be
shown. Therefore the idea of transforming the machines in-
to each other to profit from the benefits of both is obvious.
Mealy machines have the advantage of requiring less states
since one state can produce a number of different outputs
in combination with the input. A Moore machine’s state
on the other hand only produces one output. A Mealy ma-
chine is also faster by reacting directly to the input. This
feature however is not always wanted, since it can lead to
undesired outputs (e.g. hazards, glitches) when the input is
variable. A Moore machine is more stable in this regard,
since it only indirectly reacts to input changes. The output
only changes when transferring into the next state. Trans-
forming a Mealy machine into a Moore machine is there-
fore useful in case a direct dependence on the input is to be
avoided.
In the paper the transofmation of a Mealy machine into
a Moore machine is presented. In this transformation the
feedback of the state of the transformed Moore machine is
at the output. In order to set the correct state at the input

of the state transfer function of the Mealy, a function will
be integrated, which will generate the initial state from the
output signal of the Mealy machine. For function stable
asynchronous machines this can be done with dual-rail lo-
gic and the RS-Buffer [4]. With the method presented in
the article, function stable circuit parts can be abstracted as
blocks and moved over other blocks at will. With this me-
thod, individual machines can be strung together and com-
plex circuits for safety relevant applications can be reali-
zed.

2 Theory

This paper describes the underlying theory of the transfor-
mation and provides an illustrative example.

δ

λ
z

x
x

y

Figure 1: Fully asynchronous Mealy machine

Figure 1 shows a fully asynchronous Mealy machine. The
branches entering a node in the graph should end reflexive,
so that only transient states are allowed which are cons-
cious and triggered from outside. To view all branches of
the Mealy machine as locally reflexively concluded, the
feedback should be moved over λ , making the output y the
feedback. In order to set the correct state z for the transfer
function δ , a function λ−1 is realized, which generates
the reduced state z from the feedback y. This equivalent
transformation is outlined in figure 2.

λ -1

δ

λ

z

z

x
x

x

y

Figure 2: Equivalent transformation

The following applies:

δ (z,x) = z

δ
(
λ

-1(y,x),x
)
= λ

-1(y,x)

λ
(
δ
(
λ

-1(y,x),x
)
,x
)
= y

mit λ
(
λ

-1(y,x),x
)
= y

2.1 Dual-rail logic

For the implementation in dual-rail logic, the fully asyn-
chronous circuit from figure 1 will be divided in the 1- and
0- share. This is done by partitioning the state transfer func-
tion and the output function, see figure 3.

δ z

δz

+

λy

λy

+

y
z

z = (z,z)

z
y

x

x

x

x

(y,y) = y

Figure 3: Mealy realized in dual-rail logic

The functions δ and λ are each w.l.o.g. realized in two
blocks δ = (δz,δ z) and λ = (λz,λ z). In order to guarantee
this secure dual rail structure, RS-Buffers [4] are used.

Λy
e uy

∆z
e uz

Λz

Λz

Λz

Figure 4: Venn diagram of 1-states in 1-outputs

The stabilized 1-states, ∆z
c sz, are transformed into 1-

outputs, Λy
c sy. The corresponding Venn diagram of

the stabilized 1-states in 1-outputs can be seen in figure
4. 1-states that appear as 0-outputs are declared as Λz, 0-
states which appear as 1-outputs are declared as Λz. The
1-partition is composed of:

Λy
c sλy(δ z)+λy(δ z)+λy(δ z)

y u eΛy

∆z
e uz

Λz

Λz

Λz

Figure 5: Venn diagram of 0-states in 0-outputs

The stabilized 0-states, ∆z c sz, are transformed into 0-
outputs, Λy c sy. The corresponding Venn diagram of the
0-states in 0-outputs is shown in figure 5. 0-states which
appear as 1-outputs are declared as Λz, 1-states which ap-
pear as 0-outputs are declared as Λz. The 0-partition is
composed of:

Λy c sλy(δ z)+λy(δ z)+λy(δ z)

3 Use-Case

For a better understanding, an example is shown below.
The Mealy machine of figure 6 be given

δ (z,x) = zx0x1∨ x1

= z(x0∨ x1)︸ ︷︷ ︸
z

∨zx1

λ (z,x) = zx0x1∨ x0

= z(x1∨ x0)︸ ︷︷ ︸
y

∨zx0

with the stabilized 1-states of z, ∆z
c sz(x0∨ x1), the sta-

bilized 1-states Λz
c szx1, which appear as 1-outputs, the

stabilized 1-states Λz
c szx0x1, which appear as 0-outputs

and the stabilized 0-states Λz c szx0x1, which appear as
1-outputs.

δ x0

x1

z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

λ x0

x1

z

1 0 0 1

1 0 1 1

0 1 23

4 5 67

Figure 6: State transfer function and output

And the stabilized 0-states of z, ∆z c szx1, the stabilized

0-states Λz c szx0x1, which appear as 0-outputs, the sta-

bilized 0-states Λz c szx0x1, which appear as 1-outputs
and the stabilized 1-states Λz

c szx0x1, which appear as
0-outputs.

z := λ
−1
z (y,x)+¬λ

−1
z (y,x) = z+¬z

respectively

(z,z) := (δ ∧ (z∨λ),δ ∧ (z∨λ))

3.1 RS-Buffer

The used RS-Buffer and its circuit symbol are represented
in figure 7 and 8 and

VDD

VDD

M

L

L

M

VDD

S

R

B

Figure 7: RS-Buffer (schematic)

+ B

S

R

Figure 8: Circuit symbol of the used RS-Buffer

its logic table is specified in table 1. This RS-Buffer is
used to guarantee handshaking and synchronization, espe-
cially with asynchronous feedback structures. Overlaid
signals can lead to dangerous errors, meta stabilities and
races. Therefore these dangers must be intercepted reliab-
ly. The recommended RS-Buffer is suitable for this task.
On the transistor level it consists of a first stage (tri-state-
combinationals) and a second stage (so called babysitter).
The tri-state steering structure provides, depending on the
input, either a set or a reset signal or a high resistive closure
to the babysitter. The babysitter itself consists of two com-
plementary loops. If no signal is pending (high resistive
closure) the babysitter saves the last state. The RS-Buffer
is used to let every constructive superposition of signals
pass, the positive superposition trigger the setting signal
and the negative superposition triggers the resetting signal,
or the last defined signal is on hold [5].

R 0 0 1 1
S 0 1 0 1
B B 1 0 B

Table 1: Truth table of the RS-Buffer

The formula for the output B is therefore B := R(B∨ S)∨
S(B∨R) = RS∨RB∨SB.

For x = (x1,x0), y = (y) and z = (z) the transformation of
the Mealy machine (X ,Y,Z,δ ,λ) with the state transfor-
mation function and output function

δ (z,x) = zx0x1∨ x1 λ (z,x) = zx0x1∨ x0

in figure 9, figure 10 respectively will be executed.

∧
∨

∧
∨x1

x0x1

x1

x0

x0

y

Figure 9: Mealy machine before the transformation

δ x0

x1

z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

λ x0

x1

z

1 0 0 1

1 0 1 1

0 1 23

4 5 67

Figure 10: ... and the KV-diagrams

The function δ will be partitioned in propositional logic
in the stabilized 1-states δ z and the stabilized 0-states δ z
in the following KV-diagrams, see figure 11. Same applies
for the output function, represented in figure 12.

δ z x0

x1

z

∗ ∗ ∗ ∗

∗ 1 1 1

0 1 23

4 5 67

δ z x0

x1

z

1 1 ∗ ∗

∗ ∗ ∗ ∗

0 1 23

4 5 67

Figure 11: State transfer function (δ z,δ z)

λy
x0

x1

z

1 ∗ ∗ ∗

∗ ∗ 1 1

0 1 23

4 5 67

λ y
x0

x1

z

∗ 1 ∗ ∗

∗ 1 ∗ ∗

0 1 23

4 5 67

Figure 12: Output (λy,λ y)

For the function λ−1 the following expression applies

z := z(z(x0∨ x1)∨ zx1)+ z(x1) = x1

z := zx0x1 + zx0x1 = x0x1

with the illustration in the KV-diagram in figure 13.

z
x0

x1

y

∗ 0 1 1

∗ 0 1 1

0 1 23

4 5 67

z
x0

x1

y

1 0 0 ∗

1 0 0 ∗

0 1 23

4 5 67

Figure 13: KV-diagrams of z and z

The partial truth table of the automation is represented in
table 2. The resulting automaton can be seen in figure 14.

z x1 x0 δ δ z δ z λ λy λ y z z z
0 0 0 0 ∗ 1 1 1 ∗ 0 1 0
0 0 1 0 ∗ 1 0 ∗ 1 ∗ 0 z
0 1 0 1 ∗ ∗ 1 ∗ ∗ 1 ∗ 1
0 1 1 1 ∗ ∗ 0 ∗ ∗ 1 ∗ 1
1 0 0 0 ∗ ∗ 1 ∗ ∗ ∗ 1 0
1 0 1 1 1 ∗ 0 ∗ 1 0 0 z
1 1 0 1 1 ∗ 1 1 ∗ 1 ∗ 1
1 1 1 1 1 ∗ 1 1 ∗ 1 ∗ 1

Table 2: Partial truth table of the transformed automaton

+

∧

∨
∧

∨

∧

z

x0

zx1

x1

x0

y

x1

x1

x0 λ−1

δ
λ

Figure 14: Automaton after the transformation, z′ = (z,x)

4 Conclusion

The Moore transformation of a function stable asynchro-
nous Mealy machine in dual-rail logic under the use of the
RS-buffer was exemplarily shown in this paper. The feed-
back of the state was moved over the output function λ of
the Mealy machine and created correctly at the input δ via
the function λ−1. The part of delta that is stabilized in z
can be held in the interim feedback of λ−1 when needed
and the transitive part, which is only dependent on the in-
put variables x, will be generated by the combinationals.

5 Literature

[1] Gürkan Uygur, Sebastian M. Sattler: Pin-Type Based
VLSI Partitioning. AmE 2014, Dortmund.

[2] M. Ipek: Eine Testfallspezifikation für das funktions-
orientierte Testen von reaktiven eingebetteten Syste-
men im Automobilen Bereich. [Ph.D. Dissertation].
Universität Kaiserslautern, Mai 2011.

[3] Udo Hebisch: Formale Sprache und Automatentheorie
WS 13/14 page 45-50.
http://www.mathe.tu-freiberg.de/ hebisch/
skripte/auttheorie/formsprach.pdf

[4] Gürkan Uygur, Sebastian M. Sattler: A Real-World
Model of Partially Defined Logic. 12th International
workshop on Boolean Problems 2016, Freiberg.

[5] Gürkan Uygur, Sebastian M. Sattler: A new Approach
for Modelling Inconsistencies in Digital-Assisted Ana-
log Design. Journal of Electronic Testing 2016, Page
498-503.

