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ABSTRACT 
 

For the functional safety of safety-critical circuits and systems, the function of the real structure has to be 

modelled in a structured manner. It must therefore be ensured that the formally derived and modelled 

function is consistently conformed to the function generated by the real structure. Conversely, it is fatal for 

safety if the modelled function has a behaviour, which differs from the realized function. For the first time, 

this paper introduces a structure-based verification method using signal flow graphs at lattice level. A 

digital circuit will make this more comprehensible and the results will be presented in signal flow graphs. 

Based on the results of our verification method, we developed a structure-preserving method for fault 

diagnosis and localization. The presented verification method leads to the creation of a quaternary vector 

list as a database. This database encodes the phase lists of the weighted edges of a signal flow graph. It is 

possible to program search functions, going through the database and determining certain criteria, e.g. test 

coverage, fault coverage and test accuracy. However, the lists generated by a complex reality can assume a 

great extent in their dimensions. In order to achieve a lower memory requirement and a shorter computing 

time, the database should be compacted without loss of information. In this article, a self-developed method 

for data compaction is additionally presented and exemplified. 
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1. INTRODUCTION 
 

Simulation-based validation methods are the most frequently used tools for validating complex 

circuits and systems. However, since design and technology are increasingly limited, simulation-

based validation is not capable of covering all possible scenarios, which is an unacceptable basis, 

especially for safety-critical systems [1]. It is therefore known that widespread simulation 

techniques are not sufficient to ensure the correctness of complex systems [2]. Consequently, the 

cost of testing complex systems, with which all scenarios need to be covered, has increased for 

why test is becoming a dominant factor in overall production cost [3]. The alternative is to use 

theoretically well-founded formal verification tools [4], whereby the exact allocation of virtual 

functionality and real structure takes place. It is therefore useful to use a robust and effective 

verification method that tests the functionality of complex and directed real systems. In this 

paper, there we present a formal method named "Structure-Preserving Modelling based on Signal 

Flow Graph" for verification and testing of circuits and systems. We first introduce the structure-

preserving methodology we propose by explaining the steps and the underlying rules. We 

illustrate the method on a real, simple circuit with self-injected faults. A structure-preserving 

method for fault diagnosis and localization is presented and used on our circuit. Finally, we 

present a method and its realization for loss-free data compression, in order to achieve a 

compacted test process. 
 

2. STRUCTURE-PRESERVING MODELLING 
 

We are interested in formal, theoretical modelling methods that cover digital and analog 

properties of a given structure (system or circuit) and support model-based verification for system 



International Journal of Electronic Design and Test (JEDT) Vol.1 No.1 

  26 

 

behaviour. Furthermore, the theory should be equipped with the ability to subdivide an arbitrary 

structure into substructures and to compose the resulting sub-models into an overall model. The 

modelling of real systems by the use of functions (using the description of the behaviour) that 

preserve the structure, leads to a presentation in a signal flow graph (SFG). A SFG is the 

presentation of an abstract algebra, the formulas that can be used to verify structure-preserved 

images. The SFG is the directed graphical presentation of a multiple set (multi-set), which 

consists of so-called edges and nodes, which represent morphisms (e.g. functions) and objects 

(e.g. sets). The phase lists of a SFG consisting of nodes and edges are independent from one 

another and without restriction of the generality concurrent to each other (simultaneously in 

parallel) [5]. This data model in positive logic (PL) with additional properties like associativity 

and identity forms the prerequisites for encoding a control circuit [6]. This data model splits 

into Operation (OP) and Control  (CTRL) and guarantees the functions specification (spec), test 

(test), functionable (k) and non-functionable (/k) for each partial structure. 
 

2.1. STEPS TO CREATE THE DATA MODEL 
 

The creation of the data model is divided into three steps: First (1), the real pins that occur in the 

real structure must each be designated with a positive or negative literal, which corresponds to the 

embedding of the real structure into a coding universe. Then (2), the real structure is abstracted in 

an event-based manner and simulated in a model by a directional signal flow using two paths 

(dual-rail). Subsequently (3), the state transitions of the sub-models are described in propositional 

logic expressions (AA), their SFG are encoded with (1, 0, -) in three-valued logic (so-called 

ternary vector list, TVL [7]) and formatted as quaternary vector list (QVL) in (1, 0, -, X). 
 

2.2. RULES FOR GENERATING THE MODEL 
 

The first step towards the creation of the data model, the labelling of the pins, can be channelled 

with the "directed" laws of the respective physics or electrical engineering by means of two rules. 

First and most important rule: naming pins according to pin partitioning [5], these are states (S), 

primary inputs (PI) and primary outputs (PO). The second rule is to fine-tune the pins according 

to the transmitted digital signal value (1 or 0), negative literal for signal value equals 0 (low) and 

positive literal for signal value equals 1 (high). The negative literal is marked with the prefixed 

symbol "/". Regarding the second step for creating the data model, the representation of the 

"substitutable" complementarity by means of the operation switch (¬) is carried out in dual rail 

[8]. The rules for carrying out the third step for creating the data model, the coding of the 

functions spec, test, k and /k in TVL are: spec and test require defined limits and fault models to 

be known, k and /k require realities that are e.g. components and lines. As each state is splitted 

into two states, called present state Sa and next state Sn, S = (Sa, Sn) is generally determined in that 

way, that OP spec and test are directed from Sa to Sn, while CTRL k and /k are directed from Sn to 

Sa. Thus, as soon as spec is fulfilled, a pin or a state retains its value in terms of a state 

stabilization [9], Sn = Sa. By contrast, if test is fulfilled (fail), the state changes into its 

complementary (substitute), i.e. into the same state with negative literal, Sn = /Sa. Since k and /k 

depend on their respective reality, it is inconvenient to develop a general formula for their 

fulfillment. They are modelled explicitly or implicitly. 
 

2.3. COMMON EXAMPLE 
 

The particular data model is generated from the following design pattern. Let X and Y be two real 

pins, that are present in a structure, then its associated SFG is shown in Figure 1 (left). Real pins 

X and Y has been here (e.g.) declared as positive literals X and Y. The SFG shown in Figure 1 

(left) can be reduced to the SFG in Figure 1 (right), X = (Xa, Xn) and Y = (Ya, Yn). Table 1 shows 

the state transitions as phase lists. The state transitions (events) from defined limits, reality and 

known errors are encoded in TVL. The star symbol "*" represents "undefined" regarding the 

entire article. Is a list place reserved with the symbol "", it means that this place does not exist. 
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Xn kX
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X
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Figure 1. Common data model - Reduced data model (in PL) 

 

Table 1. State transitions and functions (in TVL) 

Sa Event Sn Function 

X Y 
defined 

limits 
real 

world 
known 

faults 
X Y OP CTRL 

1  (1,0,-)   1 * specX 

 1  (1,0,-)  1   kX 

1    (1,0,-) 0  testX 

 0  (1,0,-)  1   /kX 

 1 (1,0,-)    1 specY 

 1   (1,0,-)  0 testY 
 

3. EXAMPLE DIGITAL CIRCUIT 
 

In this chapter, a real digital circuit (DUT - Device-Under-Test) should be prepared for the 

verification of known, self-defined errors with the help of "Structure-Preserving Modelling based 

on SFG". We consider the digital circuit shown in Figure 2, which is already available on a real 

board. The circuit is equipped with jumpers, which serve as well-known faults to be modelled 

(injected). The goal we pursue is to carry out the verification on the basis of deliberately installed 

errors by plugging in and removing jumpers, respectively. For this purpose, an automatic test 

device based on a μ-Controller is developed and programmed. In this article, we will restrict 

ourselves to the theoretical part, the report on structure-preserving modelling of a circuit. 
 

3.1. SCHEMATIC REPRESENTATION OF THE DUT 
 

 

Figure 2. Schematics of DUT (by courtesy of Liebherr GmbH) 
 

The digital circuit in Figure 2 shows CMOS inverters (INV_1 and INV_2) connected in series 

and controlled by a BJT (npn). The circuit includes six switches S1, S2, S3, S4, S5 and S6, 

serving as jumpers and which can be plugged in (closed) or out (open) manually. In order to 

avoid any undesirable electrical interruptions or short circuits in normal operation, switches S1, 

S3 and S6 are closed, while switches S2, S4 and S5 are open. If a digital 1 is set at the input 

(A_CTRL), transistor T1 becomes conductive and pin B is pulled to GND (digital 0). If switches 

S1 and S2 are in normal operation, pin C takes this digital 0. This is then inverted by the inverter 
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(INV_1) and outputted as digital 1 to pin D. Pin E accepts the digital 1 from pin D if the switches 

S3 and S4 are switched to normal operation. This is then inverted by the inverter (INV_2) and 

outputted as digital 0 to pin F. Pin G at the output accepts the digital 0 from pin F if the switches 

S5 and S6 are in normal operation. Otherwise, if digital 0 is applied to the input, the transistor T1 

is non-conductive and pin B takes the digital 1 out of the ohmic resistors R2 and R3 ≫ R2 due to 

the voltage divider. The value is switched to digital 0 by the inverter (INV_1) and transferred to 

pin E. Resulting of inverter (INV_2) the value is switched to digital 1 and propagated to pin G. 
 

3.2. STRUCTURE-PRESERVING MODELLING OF THE DIGITAL CIRCUIT 
 

3.2.1. Designate the pins 
 

It is desired to get a digital 1 at the output, but for that digital 0 must be applied to the input 

(A_CTRL). Therefore, after taking the rules in section 2.2 into account, the input pin A_CTRL at 

the BJT-base must be declared as negative literal /A and described as PI. Consequently, after 

consideration of the reality (section 3.1), the real pins B, C, F and also G must be declared as 

positive literals B, C, F and G and the pins D and E as negative literals /D and /E. It results in six 

pins or states (B, C, /D, /E, F, G) and one PI (/A). Pin G is both a state and PO. The switches are 

declared as positive literal when closed in normal operation, otherwise with negative literal. The 

list is S1, /S2, S3, /S4, /S5 and S6. 
 

3.2.2. SFG in Dual-Rail 
 

After successfully implementing the first step of the verification method, the designating of the 

pins, we can now apply the second step, abstracting the reality in event-based manner, and 

present a SFG in dual-rail using the operation switch (¬). By the operation switch, the six original 

states (B, C, /D, /E, F, G) become six substitutable complementary states (¬B, ¬C, ¬/D, ¬/E, ¬F, 

¬G). On each of the twelve states the function test is applied, which means that twelve 

substitutable, complementary states can be achieved. In summary, the states B, C, /D, /E, F and G 

result in /B /C, D, E, /F and /G and from ¬B, ¬C, ¬/D, ¬/E, ¬F and ¬G results /¬B, /¬C, /¬/D, 

/¬/E, /¬F and /¬G. Figure 3, shows the SFG. The state (5V, /GND) in the SFG represents the 

voltage supply. The transition from state (5V, /GND) to state B and dual to that to state ¬B 

follows by functionable k5V und k/GND. 
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k5V

B

/B

testB

C

/C

kB
/kB

specC

test/E

/D

D

test/D

/E

E

k/D

/k/D

spec/D

spec/E

testG

F

/F

testF

G

/G

kF
/kF

specF

specG

kC

k/E

/kC

/k/E

testC

¬B
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¬/D
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/¬C

/¬/D

/¬/E

/¬F

/¬G

k/GND

spec¬C

spec¬/D

spec¬/E

spec¬F

spec/¬G

test¬B
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test¬C

k¬B

k¬C

k¬/D
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test¬/D

/k¬/D
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/k¬C

/k¬/E
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Figure 3. Data model (SFG) of the DUT 
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3.2.3 Coding of the functions (OP, CTRL) 
 

3.2.3.1 Embedding in the coding universe 
 

Before we proceed to create the data model with the assigning (encoding) of the state transitions 

spec, test, k, and /k in TVL in the third step, we depict the circuit in a complete value table (with 

all input combinations). The following nine value tables (Table 2) result. The creation of these 

complete value tables, or their listing as TVL, is mandatory and serves to control the results in the 

third step, which is carried out in coming section. 
 

Table 2. Circuits as value table (in TVL) 
 

B /A S1 /S2 B 
 

B S1 /S2 C 
 

C S1 /S2 C  

- 0 - 1 1 
 

1 1 1 1 
 

1 1 1 1  

- 0 0 - 1 
 

1 - 0 0 
 

- - 0 0  

- 1 - - 0 
 

1 0 - 1 
 

- 0 - 0  

- 0 1 0 0 
 

0 - - 0 
 

0 1 1 0  
 

/D S3 /S4 /D  /D S3 /S4 /E  /E S3 /S4 /E 

0 - - 0 
 

0 - - 0 
 

- 0 - 0 

1 1 0 0 
 

1 0 - 0 
 

- - 0 0 

1 0 - 1 
 

1 - 0 0 
 

0 1 1 0 

1 1 1 1  1 1 1 1  1 1 1 1 
 

F /S5 S6 F  F /S5 S6 G  G /S5 S6 G 

1 1 - 1 
 

1 1 1 1 
 

1 1 1 1 

1 0 - 0 
 

1 - 0 0 
 

1 - 0 0 

0 - - 0 
 

1 0 - 0 
 

1 0 - 0 

     0 - - 0  0 - - 0 

 

3.2.3.2 Coding of the function in TVL 
 

The following coding-tables in Table 3 to Table 8 serve together with their SFG as a more 

detailed description of weighted edges of the SFG from Figure 3. They exhibit the specific 

encoding of the OP-functions (spec, test) and CTRL- functions (k, /k). This is done, after taking 

the rules from section 2.2 into account. Analogous to the structure of Table 1, δ(Sa, Sn) depends 

on the states (B, C, /D, /E, F, G), the PI (/A) and the fault models (S1, /S2, S3, /S4, /S5, S6). In 

Table 3, the state B retains its digital 1 if the function specB is fulfilled. This is done without 

influence of the errors, i.e. (S1, /S2) = [], the value of the PI /A is set to digital 0. If the 

function testB is fulfilled, state B changes to digital 0. This is due to (/A, S1, /S2) = [0 1 0] and 

(/A, S1, /S2) = [1 - -]. In the case of the first combination (S1, /S2) = [1 0], a known fault is 

detected as present, switch S2 is closed (electrical short circuit). In the other case,                     

(S1, /S2) = [- -], it could occur (S1, /S2) = [1 1], causing the known fault to be correctly 

recognized as not present. In this way, the data model contains all the answers to known errors 

detected as existing faults and known errors detected as non-existent faults. Since power supply is 

always assumed to exist, k5V and k/GND are considered as fulfilled and do not require coding 

(related SFG to Table 3). Otherwise, kB, /kB and k¬B are explicitly modelled in Table 4 without 

consideration of fault models. kB and k¬B are modelled with (C, B) = [1 1] and (C, B) = [0 0], if 

e.g. the component R3 is present and /kB with (C, B) = [0 1], e.g. if R3 << R2. The coding of the 

functions kC and k¬C is already covered by spec/D and spec¬/D with (/D, C, /D) = [0 1 0] and       

(/D, C, /D) = [1 0 1]. These are the edges from C to /D and ¬C to ¬/D in the corresponding SFG 

to Table 5. However, kF and k¬F are explicitly modelled in Table 8 and are holding the output 

state F. For the coding of remaining functions analogous procedure were applied. The encodings 

carried out can then be compared with the complete value tables (Table 2 in previous section). All 

encodings are contained in them and with that, everything is right. 
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Table 3. OP encoded in B and associated SFG 

B /A S1 /S2 B Function 

5V
k5V

B

/B

testB

specB

/GND
k/GND

¬B

/¬B

test¬B

spec¬B
 

1 0   1 specB 

0 1   0 spec¬B 

1 1 - - 0 
testB 

1 0 1 0 0 

0 0 1 1 1 
test¬B 

0 0 0 - 1 

      

      

  Table 4. (OP, CTRL) encoded in (C, B) and associated SFG 

C S1 /S2 C Function 

B
kB

C

/C

testC

specC

k¬B
¬C

spec¬C

/kB

¬B

 

1   1 specC 

0   0 spec¬C 

1 - 0 0 
testC 

1 0 - 0 

     

C S1 /S2 B Function 

1   1 kB 

0   1 /kB 

0   0 k¬B 

Table 5. OP encoded in /D and associated SFG 

/D S3 /S4 C /D Function 

¬C
1

¬/D

/¬/D

test¬/D

spec¬/D

1
/D

spec/D

C

 

0   1 0 spec/D 

1   0 1 spec¬/D 

1 1 0  0 test¬/D 

      

      

      

      

Table 6. (OP, CTRL) encoded in (/E, /D) and associated SFG 

/E S3 /S4 /E Function 

/D
k/D

/E

E

spec/E

k¬/D
¬/E

spec¬/E

/k/D

¬/D

/¬/E

test¬/E

 

0   0 spec/E 

1   1 spec¬/E 

1 - 0 0 
test¬/E 

1 0 - 0 

     
/E S3 /S4 /D Function 

0   0 k/D 

1   0 /k/D 

1   1 k¬/D 
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Table 7. OP encoded in F and associated SFG 

F /S5 S6 /E F Function 

/E
1

F

/F

testF

specF

1
¬F

spec¬F

¬/E

 

1   0 1 specF 

0   1 0 spec¬F 

1 0 -  0 testF 

      

      

      

      

Table 8. (OP, CTRL) encoded in (G, F) and associated SFG 

G /S5 S6 G Function 

F
KF

G

/G

testG

specG

K¬F
¬G

spec¬G

¬F

 

1   1 specG 

0   0 spec¬G 

1 - 0 0 
testG 

1 0 - 0 

     
F /S5 S6 F Function 

1   1 kF 

0   0 k¬F 

     

Not all functions or state transitions are encoded in the SFG in Figure 3, /kC, /k/E, /kF, /k¬B, /k¬C, 

/k¬/D, /k¬/E and /k¬F do not lead to any additional information, test/D, test/E, test¬C, test¬F and test¬G 

will never be fulfilled. Therefore, the states D, /¬C, /¬F and /¬G in Figure 3 are not achieved The 

merging of the SFGs corresponding to Table 3 to Table 8 are embedded into the SFG in Figure 4. 

5V, /GND

k5V

B

/B

testB

/C

kB

E

k/D /k/D

testG

/F

testFkF

1

1

testC

/¬B

/¬/D

/¬/E

¬G

k/GND

test¬Bk¬B

1

k¬/D

1

test¬/D

test¬/E

k¬F

CspecC

/Espec/E

FspecF

GspecG

/kB

specB ¬B

¬C

¬/D spec¬/D

¬/E

¬F

/¬G/¬C /¬FD

spec¬B

spec¬C

spec¬F

spec¬G

spec¬/E

/D
spec/D

/G
 

Figure 4. Data model (SFG) of DUT 
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3.2.3.3 Setting up of TVL in QVL 

The TVLs created in section 3.2.3.2 are now to be set up and summarized as QVL. This is done 

by replacing the symbol "" in Table 3 to Table 8.The symbol assigns "undefined" with the 

symbol "X". Table 9 shows the summary of the TVL in QVL. QVL is a format for the realization 

of TVL. The function δ(ZaZn) is constructed analogously to Table 1, the input and the switch are 

encoding δ. In the next section we briefly present a method to locate errors based on the results of 

our structure-preserving modelling method (data model Table 9). 
 

Table 9. Data model of DUT (in QVL) 
 

Sa PI Switch Sn 
Function 

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G 
1 X X X X X 0 X X X X X X 1 X X X X X specB 

0 X X X X X 1 X X X X X X 0 X X X X X spec¬B 

1 X X X X X 0 1 0 X X X X 0 X X X X X 
testB 

1 X X X X X 1 - - X X X X 0 X X X X X 

0 X X X X X 0 0 - X X X X 1 X X X X X 
test¬B 

0 X X X X X 0 1 1 X X X X 1 X X X X X 

X 1 X X X X X X X X X X X 1 X X X X X kB 

X 0 X X X X X X X X X X X 1 X X X X X /kB 

X 0 X X X X X X X X X X X 0 X X X X X k¬B 

X 1 X X X X X X X X X X X X 1 X X X X specC 

X 0 X X X X X X X X X X X X 0 X X X X spec¬C 

X 1 X X X X X 0 - X X X X X 0 X X X X 
testC 

X 1 X X X X X - 0 X X X X X 0 X X X X 

X X 0 X X X X X X X X X X X 1 0 X X X spec/D 

X X 1 X X X X X X X X X X X 0 1 X X X spec¬/D 

X X 1 X X X X X X 1 0 X X X X 0 X X X test¬/D 

X X X 0 X X X X X X X X X X X 0 X X X k/D 

X X X 1 X X X X X X X X X X X 0 X X X /k/D 

X X X 1 X X X X X X X X X X X 1 X X X k¬/D 

X X X 0 X X X X X X X X X X X X 0 X X spec/E 

X X X 1 X X X X X X X X X X X X 1 X X spec¬/E 

X X X 1 X X X X X 0 - X X X X X 0 X X 
test¬/E 

X X X 1 X X X X X - 0 X X X X X 0 X X 

X X X X 1 X X X X X X X X X X X 0 1 X specF 

X X X X 0 X X X X X X X X X X X 1 0 X spec¬F 

X X X X 1 X X X X X X 0 - X X X X 0 X testF 

X X X X 1 X X X X X X X X X X X X 1 X kF 

X X X X 0 X X X X X X X X X X X X 0 X k¬F 

X X X X X 1 X X X X X X X X X X X X 1 specG 

X X X X X 0 X X X X X X X X X X X X 0 spec¬/G 

X X X X X 1 X X X X X 0 - X X X X X 0 
testG 

X X X X X 1 X X X X X - 0 X X X X X 0 

 

3.3. ERROR LOCALIZATION 

Fault diagnosis of complex systems gains more and more attention in the matter of system safety. 

The goal is to detect and isolate all faults of the system to ensure lowest costs and the reliability 

[10] [11]. We are now shortly introducing our method of fault diagnosis. After coding the 

functions spec, test, k and /k, we can now determine all scenarios for error localization. This is 

done using the function test. The data model for the real digital circuit (Figure 2) obtained here 

provides seven test functions: testB, test¬B, testC, test¬/D, test¬/E, testF and testG. However, they are 

not all effective for detecting the error locations. There are test functions, detecting known errors 
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as being present, such as testB, test¬B in Table 3, which is important, but does not lead to error 

localization. There are these test functions, with which we can never identify whether an error 

exists, e.g. test¬B in Table 3. test¬B  is fulfilled for the coding (B, /A, S1, /S2, B) = [0 0 0 - 1], so 

pin B (Zn) receives signal 1 when /A = 0, regardless of which assignments the jumpers (error 

location) S1 and /S2. The same applies to testB with the coding (B, /A, S1, /S2, B) = [1 1 - - 0]. 

Table 10 describes all scenarios for error localization, which results of Table 3 to Table 8.  

Table 10.Error localization 
 

 testB = 1 testc = 1 test¬/D = 1 test¬/E = 1 testF = 1 testG = 1 

S1 1 0     

/S2 0 0     

S3   1 0   

/S4   0 0   

/S5     0 0 

S6     0 0 

We call Table 10 a test-cover-table test(S), which shows us the covering of the errors by each 

individual test. As an example, testB is covering up only jumper S2 (/S2 = 0), while testC covers 

up S1 and/or S2 (S1, /S2) = [0 0]. The green marked positions are no errors, are thus usually no 

part of a test-cover-table, but give more information for error localization. These positions must 

be fulfilled, so that the corresponding test function is fulfilled (fail) e.g. testB = 1 when             

(S1, /S2) = [1 0]. Same applies to test¬/D. If test function testB shows fail (testB = 1), then jumpers 

S1 and S2 are closed. However, the error location is at the jumper, which shows code 0. 

Therefore, the fault is for sure jumper S2 (short circuit). The same applies to test¬/D with error 

location jumper S4 (/S4 = 0). Is testC fail, then either S1 is open (electrical interruptions) and/or 

S2 is closed (short circuit), i.e. (S1 = 0) ˅ (/S2 = 0) ˅ (S1 = 0 ˄ /S2 = 0). The same applies to 

test¬/E and testG with respective jumper combination (error locations) (S3, S4) and (S5, S6). In the 

cases testC, test¬/E and testG, there are two possibilities each for error location. Function testF is 

fulfilled when either jumper S5 is open or S5 is open and S6 is closed, i.e. (/S5 = 0) ˅              

(/S5 = 0 ˄ S6 = 0), coloured grey for illustration purposes. In this case, it can be assumed with 

certainty that if testF is fail, then S5 is an error location, but S6 could be an additional error 

location, too. If testB and testC is fail, then for sure jumper S2 is the error location (/S2 = 0, short 

circuit), because of the coding of jumper S1 in both testB and testC. Same applies for test¬/D and 

test¬/E for jumper S4 (/S4 = 0).  The data model is total in terms of test function, since it provides 

all possible test functions (effective and non-effective) and thus contains all possible error 

locations. This analysis, based on the test-cover-table, can be illustrated with the aid of SFG in a 

more detailed and understandable way. Following SFG (Figure 5) shows a fault tree. This is a 1:1 

projection of Table 10 not including the green marked positions. It serves as a possible method to 

quickly identify involved defective components, in order to then exchange them specifically. This 

fault tree consists of six paths, each covering 100% of fail tests and each representing a different 

exchange possibility. When analyzing the fault tree, it does not have to be run through 

completely, as we jump to the next node accordingly to fail and pass of tests, thus changing the 

component involved. The replacement of the components and the execution of fail test happen 

iteratively, without repetition of the exchange procedures, until all tests result in pass. If, despite 

the run of all paths in the entire fault tree, not all tests result in pass, this means that our data 

model (Table 9) is incomplete (absence of additional information) and thus the fault tree confirms 

itself. It has a direction from top to bottom and from left to right, depending on the rank of the 

components involved and therefore this method is structure-preserving, too. In order to better 

comprehend the application of the structure-preserving modelling method at the DUT, and to 

confirm the results of the method for Error localization, we will present in the next section four 

use cases as scenarios for DUT testing. The visualization is done by representation of SFGs. 



International Journal of Electronic Design and Test (JEDT) Vol.1 No.1 

  34 

 

100%S2

S4

test¬/D 

test¬/E

testB

testC

S2

testF

testG

S5 S6

testB

testC

test¬/D 

test¬/E

S4

testF

testG

S5 S6

testF 

testG

testB

testC

S2

test¬/D 

test¬/E

S4

S5 S6

testC

S2

S1

test¬/D 

test¬/E

S4 S3

testB

S4

test¬/E

S4

testB

testC

S2 S1

test¬/D

S2

S3

testF

testG

S5 S6

testF

testG

S5 S6

 

Figure 5. Fault tree of DUT 

3.4. USE CASES 
 

In this section, the expected results of the step-by-step verification method for the predefined 

digital circuit are now presented. Through a self-written program in VBA (Visual Basic for 

Applications) is-values shall be compared to set-values from Table 9. The program visualizes the 

correspond-ing SFG, coming from the resulting data model from Figure 4 with the exception of 

four not reached states D, /¬C, /¬F and /¬G. All phase lists (edges with their nodes) in this SFG 

are without restriction of the generality as adjoining. The functions spec, test, k and /k are 

coloured, if they are fulfilled, as green, red, black and blue arrows. If they are not, dashed arrows 

serve as their visualization. In the first case (Figure 6) all switches (jumpers) operate in normal 

mode (the known faults are not present), so obtaining a digital 1 in the is-table. Input /A has a 

digital 0. Since spec is fulfilled regarding B, C, /D, /E, F and G, each state (B, C, /D, /E, F, G) 

maintains its value (Sn = Sa) and the corresponding edges are represented as green arrows. 

Similarly, k regarding /B, /D and F are fulfilled. The remaining functions are not fulfilled due to 

the different is- and set-values and are marked accordingly. In the second case in Figure 7, jumper 

S2 is set to closed, receiving consequently the digital 0 (/S2 = 0). All other is-values are same as 

in case 1. Here, spec is no longer fulfilled regarding all pins, whereas testB and testC are fulfilled. 

We gained this information already before from Table 10 and corresponding SFG in Figure 5. 

The is-table for the third case is filled similar to the first case, so that now spec is fulfilled in the 

dual rail regarding ¬B, ¬C, ¬/D, ¬/E, ¬F and ¬G. In the last case (Figure 9), S4 is set to closed, so 

it receives the digital 0 (/S4 = 0), the other is-values stay the same as in Figure 8. Hence, spec is 

no longer fulfilled regarding ¬/D, ¬/E and /F but test regarding ¬/D and ¬/E are fulfilled (Table 

10 and Figure 5). In this case, it is still to mention, that /k regarding /D is fulfilled because of the 

accordance of its is- and set-values and marked accordingly (blue). Similarly, other examples can 

be generated. The examples presented show how to take care of analog properties like voltage 

and current, which are known as parametric measures. Indeed, the methodology is not limited to 

those numbers. It can additionally be applied to other physical constraints as well as all kind of 

event based digital forms. To be mentioned are delay, energy and power. The effort there will 

also be in the modelling of the underlying structure in an abstraction of a SFG. Now, search 

functions can be programmed which go through the QVL (Table 9), determine certain criteria, 

e.g. test coverage, fault coverage and test severity. However, the QVL generated by a complex 
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reality can be of great dimensions. Therefore, the database (QVL) should be compressed without 

information loss (data compaction) in order to ensure lower memory requirements and shorter 

computing time. The next chapter illustrates the procedure for such a lossless data compression. 
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Figure 6. Case 1: Is-table and SFG 
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Figure 7. Case 2: Is-table and SFG
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Figure 8. Case 3: Is-table and SFG 
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Figure 9. Case 4: Is-table and SFG 



International Journal of Electronic Design and Test (JEDT) Vol.1 No.1 

  36 

 

4. DATA COMPACTION 
 

4.1. THEORY 
 

Table 11. Table of operations 
 

¦ 0 1  - 

0 0 id 0 -0 

1 id 1 1 -1 

 0 1  - 

- 0- 1- - - 
 

Table 11 as a table of operations represents the position-by-position composition of QVL. The 

symbol "¦" represents, according to our chosen definition, the positional, regular compaction of 

two quaternary vectors QV1 and QV2. In Table 11, the first column refers to QV1 and the first 

row to QV2. The diagonal is self-explanatory, e.g. ¦ (0,0) = 0. The remaining points are filled with 

symbols, which are considered to be intermediate results of the compaction. Symbol "id" is 

assigned to the regular compaction of (0,1) with (1,0). The symbol "0" means that QV2 as "" is 

a subset of QV1 as "0", the star from QV2 is concretized in the "0" of QV1. Symbol "-0" then 

means that QV2 as "-" is defined as superset of QV1 as "0", the "-" of QV2 is concretized in "0" 

of QV1. Other symbols are valid accordingly. In order to achieve a completely parallel processing 

during compaction, the sequential quaternary list coding (intermediate results) from Table 11 is 

additionally embedded in a five-digit coding universe (columns 2 to 6 of Table 12). Amount 

strokes accumulate the occurrence of the symbol indicated therein. For example, | id | = 0 means 

that "id" does not occur in the regular compaction of the two quaternary vectors QV1 and QV2, 

while | id | = 1 means that "id" occurs exactly once. | (0,1,-)| > 0 means that "0", "1" and/or     

"-" occur at least once. The first five columns in Table 12 indicate all existing possible 

combinations in which a compaction exists. The remaining five columns then indicate the 

symbols with which symbols (intermediate results of data compaction) from Table 11 must be 

replaced. The more concrete TVLs can also be compacted with the presented method, these are 

the lines 1 to 3 and 9 to 12 for | (0,1,-)| = | (0,1,-) | = 0. There is no compacting for all other 

combinations (lines), not listed in the first five columns in Table 12. There is a subset relation in 

the first eight lines of Table 12, in line 9 a consensus and in the last three lines an overlap. If the 

coding of the intermediate result corresponds to one of the combinations of the first nine lines of 

Table 12, then the two quaternary vectors are subsets of the final result and are therefore replaced 

by the final result. If the encoding matches line 10, the end result will replace QV1, because here 

QV2 is overlapping QV1 and thus QV1 is a subset of the final result. 
 

Table 12. All Existent combinations and their replacement values 
 

row | id | | (0,1,-) | | (0,1,-)  | | (0,1)- | | -(0,1) |  id (0,1,-) (0,1,-) (0,1)- -(0,1)

1 0 0 0 0 0 
 

     

2 0 0 0 0 > 0 
 

    - 

3 0 0 0 > 0 0 
 

   -  

4 0 0 > 0 0 0 
 

  (0,1,-)   

5 0 0 > 0 > 0 0 
 

  (0,1,-) -  

6 0 > 0 0 0 0 
 

 (0,1,-)    

7 0 > 0 0 0 > 0 
 

 (0,1,-)   - 

8 0 > 0 > 0 0 0 
 

 (0,1,-) (0,1,-)   

9 1 0 0 0 0 
 

-     

10 1 0 0 0 >0 
 

-    (0,1) 

11 1 0 0 >0 0 
 

-   (0,1)  

12 1 0 0 >0 >0 
 

-   (0,1) (0,1) 
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The same applies to QV2 as a subset of the final result (line 11). If both quaternary vectors are 

not subset of the final result, the end result acts as a further quaternary vector to serve a 

progressive compaction. This is in line 12 the case, because "-" is in QV1 as well as in QV2 in 

different places. As a result, the QVL becomes larger as in the case of the Quine-McCluscy 

method [12], at least becoming smaller as the compaction progresses. 
 

Table 13. Calculation examples for data compaction 
 

case 1 case 2 case 3 case 4 case 5 case 6 

 
0 1 0 

   
0 1 - 1 

   
 1 0 

   
0  1  

   
1 0 1 

   
1 1 

   
1 1 

   
- 1 

   
- - 

¦ - 1 0 
  

¦  1 0  
  

¦ 1 - 0 
  

¦  -  1 
  

¦ 0 0  
   

0 - 
 
= 

 
0 - 

 
+ 

 
- 0 

 
+ 

 
0 - 

 
-0 1 0 

   
0 1 0- 1    

1 -1 0 
   

0 - 1 1 
   

id 0  
   

- 0 
   

id 
-

1    
- id 

   
0

- - 

⇒ - 1 0 
  
⇒ 0 1 - 1 

  
⇒ 1 - 0 

  
⇒ 0 - 1 1 

  
⇒    

   
- - 

  
= - 1 

  
= - - 

  
= - - 

With the help of the calculation examples from Table 13, it is easy to comprehend: In case 1, the 

intermediate result of the regular compaction follows [0 1 0] ¦ [- 1 0] = [-0 1 0]. The coding of this 

intermediate result, [0 0 0 0 >0], corresponds to the second line in Table 12, which leads to "-0" 

being replaced by "-". Cases 2 to 4 are to be understood analogously and refer to lines 5, 7 and 8 

from Table 12. The intermediate result in case 5 corresponds to an encoding of [1 0 >0 0 0], 

which does not occur in any of the lines from Table 12. Thus the intermediate result [id 0 ] is 

not used any further. In case 6, three ternary-vectors (TVs) are considered and coloured for better 

understanding. First, the final result of the compacting of TV1 (blue) and TV2 (red) is [-1], which 

follows from line 10 in Table 12. This result covers TV1, which causes TV1 to be replaced with 

[- 1] and subsequently compacted with TV3 (green). According to line 9 from Table 12, this 

results in the substitution of both ternary vectors with [- -]. This result is compacted with the still 

remaining TV2 and from line 3 follows the replacement of both TVs with the final result [- -]. 
 

4.2. REALIZATION 
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Figure 10. Block diagram of the data compaction method 
 

Figure 10 illustrates a block diagram as circuit for realizing the explained theory of data 

compaction (section 4.1). This leads to the compaction of two QVLs, if possible. Two QVL (QV1 

and QV2) of length n (n ∈ N) are available as input. QV1 and QV2 each have n times 2 entries 

(conduits) since the symbols (0, 1, -, ) are divalent (binary) coded (Table 14). QV1 and QV2 are 
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then entered as input in operation "¦" in the first block. The table of operations in Table 11 can be 

decomposed, after closer examination of Table 12, into two individual tables of operations (Table 

15). The intermediate results for each | id | = 0 and | id | = 1 are thus fix. This can be understood 

more precisely by considering the intermediate results in the last five columns in Table 12. 

 

Table 14. Coding of the symbols 

 

Symbol Code 

"0" 01 

"1" 10 

"-" 11 

"*" 00 

 
 

Table 15. Table of operations 

 

| id | = 0          | id | = 1 

¦ 0 1  -   ¦ 0 1  - 

0 0 - 0 -   0 0 - 0 0 

1 - 1 1 -   1 - 1 1 1 

 0 1  -    0 1  - 

- - - - -   - 0 1 - - 

In the first eight lines in Table 12, with the commonality of | id | = 0, the intermediate results -(0,1) 

as well as (0,1)-, when existing, were replaced by "-" ([11]), whereas in the last four lines             

(| id | = 1) replacement was carried out with "(0,1)" ([01], [10]). The two resulting tables in Table 

15 differ in only four out of 16 digits (coloured grey). For the first workflow "¦", we first decide 

for the table of operations to | id | = 1, with a possible correction at the end if necessary, i.e. when 

| id | = 0 appears.  
 

Table 16. QV1 compaction with QV2 for | id | = 1 
 

row QV1 QV1 Z2 Z1 Z0 id (0,1,-) (0,1,-) (0,1)- -(0,1) 

1 01 01 0 0 1 0 0 0 0 0 

2 00 01 0 0 1 0 1 0 0 0 

3 01 00 0 0 1 0 0 1 0 0 

4 10 10 0 1 0 0 0 0 0 0 

5 00 10 0 1 0 0 1 0 0 0 

6 10 00 0 1 0 0 0 1 0 0 

7 00 00 0 0 0 0 0 0 0 0 

8 10 01 0 1 1 1 0 0 0 0 

9 01 10 0 1 1 1 0 0 0 0 

10 11 11 0 1 1 0 0 0 0 0 

11 00 11 0 1 1 0 1 0 0 0 

12 11 00 0 1 1 0 0 1 0 0 

13 01 11 1 0 1 0 0 0 0 1 

14 11 01 1 0 1 0 0 0 1 0 

15 10 11 1 1 0 0 0 0 0 1 

16 11 10 1 1 0 0 0 0 1 0 
 

All possible input combinations of (QV1, QV2) (24 = 16 combinations) are given in Table 16. As 

output we get a list of length n with eight entries (Z2, Z1, Z0, id, (0,1,-), (0,1,-), (0,1)-, -(0,1)). They 

are outputted independently and in parallel. The variables Z1 and Z0 are used for the binary 

coding of the results from Table 15 to | id | = 1. Auxiliary variable Z2 provides additional and 

necessary information as to whether we are in the grey area of Table 15. This is encoded with    

Z2 = 1 (grey) and Z2 = 0 (not grey). The remaining symbols (id, (0,1,-), *(0,1,-), (0,1)-, -(0,1)) 

correspond to the same symbols from the last five columns in Table 12. They are encoded with 1 

if they exist as intermediate results for a certain combination of (QV1, QV2), otherwise with 0. 

The last 5 times n outputs of operation "¦"  (id, (0,1,-), *(0,1,-), (0,1)-, -(0,1)) are first entered parallel 

into six satellites (Sat1 to Sat6). The satellites serve as functions for detecting the presence of 

each of these intermediate results and operate in parallel and independently. For the first five 

satellites, a single value is obtained for each satellite: 1 (True) if the investigated intermediate 

results occur at least once, or 0 (False) if they do not occur at all. However, Sat6 checks whether 
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the intermediate result "id" occurs exactly once. All satellites are initialized to True. However, as 

soon as one of the satellites Sat1 to Sat5 receives the signal 1, i.e. the intermediate result is 

existing, the run is terminated (while-loop) and the corresponding satellite gives False as output. 

This is the principle of Wired-OR, so it is always checked for signal 0. This completes the 

calculation quickly. The realization of the first five satellites Sat1 to Sat5 can be seen as a flow 

chart with the corresponding program code in Figure 11 und Figure 12. Sat6 needs an additional 

auxiliary variable, which we call flag, to investigate whether "id" occurs exactly once. Sat6 is 

initially initialized to False (| id | = 0). Once 1 is signalled, Sat6 takes the value of flag, which has 

been initialized True and flag becomes False. If an additional 1 is signalled, Sat6 takes the value 

of Flag with False and thus    | id | > 1. When no additional 1 signal is received, the value remains 

True and thus | id | = 1. The flow chart and program code associated with Sat6 are shown in 

Figure 13 and Figure 14. The input variable tv in Figure 11, Figure 12, Figure 13 and Figure 14 

represents the outputs id, (0,1,-), *(0,1,-), (0,1)-, and -(0,1) of the operation "¦" from Figure 10. They 

are TVLs of length n and are examined in descending order starting from tv(n-1). Since all 

satellites work in parallel and independently, the first five satellites need only one cycle, whereas 

Sat6 requires two cycles. The monovalent outputs of the six satellites (True or False, i.e. 1 or 0) 

flow into a formula, explaining the first five columns in Table 12.This formula is used to decide 

whether the results Z1 and Z0 of the operation "¦" will be further accepted and whether QV1 and 

QV2 can be compacted. In order to enable a faster decision the following steps were made: 

Firstly, the first five columns in Table 12 were reduced line-by-line, i.e. lossless compressed and 

secondly, the columns where ordered in a more intelligent way. This results in Table 17. 

START

tv, n

sat = True

help = True

Help = True

True

n > 0

True

n = n -1 

tv(n) = 1

True

sat = False

help = False

False

sat

END

Falsehelp := False

False

 

Figure 11. Flow chart of Sat1 to Sat5 

 

 
 

 
 

 

 

 
 

Algorithm | tv | = 0 

Input: tv, n 

Output: sat 

sat = True 

help = True 

While help = True 

        if n > 0 then 

                n = n - 1 

                if tv(n) = 1 then 

                        sat = False             

                        help = False    

                end if          

        else 

              help = False 

        end if 

Wend 

return sat 

Figure 12.  Algorithm of Sat1 to Sat5 
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help = True

flag = True

help = True
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n > 0

True

n = n -1 

tv(n) = 1

True

sat = flag

help = True

flag = True

False

sat

END

Falsehelp = False

False

 

Figure 13. Flow chart of Sat6 

Algorithm | tv | = 1 

Input: tv, n 

Output: sat 

sat = False 

help = True 

flag = True 

While help = True 

        if n > 0 then 

                n = n - 1 

                if tv(n) = 1 then 

                        sat = flag             

                        help = flag 

                        flag = False    

                end if          

        else 

              help = False 

        end if 

Wend 

return sat 

Figure 14. Algorithm of Sat6 

Table 17. All existent combinations (compacted) 

row | id | | (0,1)- | | (0,1,-)  | | -(0,1) | | (0,1) | 

1 0 0 0 - - 

2 0 0 > 0 0 - 

3 0 > 0 - 0 0 

4 1 - 0 - 0 

The formula checks every possible combination of Table 17. If the combination occurs, then True 

results, i.e. the compaction can continue. In case of False, therefore, no compaction is possible. 

The corresponding flow chart and code for the formula are shown in Figure 15 and Figure 16. 

The Boolean variables sat1 to sat6 represent the outputs of satellites Sat1 to Sat6,     sat1 = True if    

| -(0,1) | = 0, otherwise sat1 = False. Same applies to sat2, sat3, sat4 and sat5 with each | (0,1)- |,           

| (0,1,-)  |, | (0,1) | and | id |. For the Boolean variable sat6 = True applies if | id | = 1, otherwise 

False. If we are in one of the four combinations in Table 17 (corresponding the 12 four 

combinations in Table 12), i.e. the output of the formula is True, then a black box, which we call 

decoder, gets the outputs from Z2, Z1, Z0 (TVLs with n entries) and from Sat5 (True for  | id | = 0, 

otherwise False). The decoder passes the results Z1 and Z0 when Sat5 yields False, i.e.  | id | = 1, 

as before Table 15 to | id | = 1 was chosen. However, if Sat5 yields True, i.e. | id | = 0, the entries 

in Z1 and Z0 are each encoded with 1, if auxiliary variable Z2, in the same locations, was encoded 

with 1 (grey region in Table 16). Table 18 and the associated program code (Figure 17) serve as 

explanation of the here made theory. For purposes of illustration, the places with Z2 = 1 and          

| id | = 0 are marked in grey in Table 18.The output of the circuit (Figure 10) is then Z1 and Z0. 

The circuit realized here for data compaction works fully parallel in, which enables a fast 

compaction. The codes mentioned here are sequential as we work with a sequential computer and 

program language. However, thanks to the circuit in Figure 10, the compaction method presented 

here can be implemented fully in parallel in e.g. FPGA [13]. 
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Figure 15. Flow chart of the formula

 

Algorithm formula 

Input: sat1, sat2, sat3, sat4, sat5, sat6 

Output: formula 

Formula = False 
if sat5 = True then 

        if sat2 = True then 

                if sat3 = True then  

                        formula = True 

                else 
                        if sat1 = True then 

                                formula = True 

                        end if   

                end if 

        else 

                if sat1 = True then 

                        if sat4 = True then 

                                formula = True 

                        end if 

                end if 

        end if  

else if sat6 = True then 

        if sat3 = True then 

                if sat4 = True then 

                         formula = True 

                end if 

        end if 

end if 

return formula 

Figure 16. Algorithm of the formula 

Table 18. Decoding of Z1 and Z2 

Z2 Z1 Z0 
| id | = 0 | id | = 1 

Z1 Z0 Z1 Z0 

0 0 0 0 0 0 0 

0 0 1 0 1 0 1 

0 1 0 1 0 1 0 

0 1 1 1 1 1 1 

1 0 1 1 1 0 1 

1 1 0 1 1 1 0 

 

 

 

 

Algorithm decoder 

Input: n, Z2, Z1, Z0, sat5 

if sat5 = True then 

        for i = 0 to n-1 

                if Z2(i) = 1 then 

                        (Z1(i),Z0(i))= [11] 

                else 

                        (Z1(i),Z0(i))= [Z1(i),Z0(i)] 

                end if 

        next i 

else 

        (Z1,Z0) = [Z1,Z0] 

return (Z1,Z0) 

Figure 17. Algorithm of decoder

The result QV = (Z1, Z0) must now be assigned. In section 4.1 the possible replacement theories 

were mentioned: Depending on the correspondence of the coding of the intermediate results of 

calculation QV1 ¦ QV2 in Table 12, QV can substitute QV1, QV2 or both or can be used as new 

QV. This information of the replacement processes can be obtained with the help of the declared 

satellites: Sat1, Sat2 and Sat5 for each | -(0,1) | = 0, | (0,1)- | = 0 and | id | = 0 with their outputs sat1, 

sat2 and sat5. Table 19 and the corresponding program code in Figure 18 serve as formula and are 

explaining the replacement processes. In the algorithm, the function "replace" serves as 

replacement of QV1 or/and QV2 while "addnew" provides a new place for QV.  
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Table 19. Overlapping possibilities of QVs 

| id | | (0,1,-) | | (0,1,-)  | | (0,1)- | | -(0,1) | comment 

0 0 0 0 0 

Q
V

 o
v
erla

p
s  

Q
V

1
 a

n
d

 Q
V

2
 

0 0 0 0 > 0 

0 0 0 > 0 0 

0 0 > 0 0 0 

0 0 > 0 > 0 0 

0 > 0 0 0 0 

0 > 0 0 0 > 0 

0 > 0 > 0 0 0 

1 0 0 0 0 

1 0 0 0 >0 

QV 

overlaps 

QV1 

1 0 0 >0 0 

QV 

overlaps 

QV2 

1 0 0 >0 >0 
No 

overlap 
 

 

 

Algorithm formula for the replacement  

Input: sat1, sat2, sat5, QV1, QV2, QV 

Outputs: QV 

if sat5 = True then 

        QV = replace (QV1,QV2) 

else 

        if sat2 = True then 

                if sat1 = True then 

                        QV = replace (QV1,QV2) 

                Else 

                        QV = replace (QV1)    

                End if  

        else 

               if sat1 = True then 

                      QV = replace (QV2) 

               else   

                      QV = addnew(QV)  

              end if            

        end if 

end if 

return QV 

Figure 18. Algorithm for replacement 

The compaction procedure explained here is applied iteratively, with the aid of a self-compiled 

program code of the circuit (Figure 10), to the QVL of the achieved model in Table 9, which 

leads to Table 20. In Table 20, (s, t, n) = (spec, test, ¬). We have reduced the amount of 33 lines 

to seven without losing information.  Here, e.g., the function testB (tB) is fulfilled, i.e. is given the 

value 1, when for its encoding universe (B, /A, S1, /S2, B) = [1 0 1 0 0 ; 1 1 - - 0] applies (grey 

coloured for visualization). This condition corresponds to the same from Table 9. Analogously, 

all further functions (spec, test, k, /k) can be controlled and thus the data compaction can be 

confirmed. We achieved a lossless, fast and effective data compaction for QVL as well as for 

TVL. This saves the memory requirement as well as the computing time when searching for 

specific criteria or information. Thus, it generally reduces the expense and in our case, especially 

the test costs. 
 

Table 20. Compacted data model of DUT (in QVL) 
 

Sa PI Switch Sn 
Function 

B C /D /E F G /A S1 /S2 S3 /S4 /S5 S6 B C /D /E F G 

1 0 1 1 0 1 0 X X X X X X 1 0 1 1 0 1 
sB, /kB, snC, sn/D, 

kn/D, sn/E, snF, knF, sG  

0 0 0 0 1 0 1 X X X X X X 0 1 0 0 1 0 
snB, knB, s/D, k/D, s/E, 

sF, kF, snG 

1 1 1 1 1 1 0 1 0 1 0 0 - 0 1 0 X 0 0 tB, sC, tn/D, /k/D, tF, tG 

1 X X 1 X 1 1 - - 0 - - 0 0 X X 0 X 0 tB, tn/E, tG  

0 1 X 1 X X 0 0 - - 0 X X 1 0 X 0 X X tnB, tC, tn/E 

0 X X X X X 0 1 1 X X X X 1 X X X X X tnB 

X 1 X X X X X - 0 X X X X 1 0 X X X X kB, tC 
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5. CONCLUSIONS 
 

The introduced Structure-Preserving Modelling based on SFG, is a structurally reliable 

verification method, which is used to test systems or circuits for known faults. By structure-

preserving modelling, we mean the conformity of the formally derived function with the real 

generated function. The verification can be carried out, with the aid of certain derived rules, in 

three steps: embedding of the real model into a coding universe, specifying a data model as SFG 

in dual rail and the creation of the sub-models (OP, CTRL) in AA, which results in the 

establishment of a QVL. Compared to known methods such as simulation and validation, the 

proposed methodology takes care of the direction of the structure and can therefore preserve the 

structure of the device to be tested within its directional structure. In our terminology, this is 

named verification. Thus, it is possible to apply algebraic methods, which have been concluded 

under idempotency. A result of this is a faster and more compact code. However, to what extent 

such approaches can be taken, will be shown. The effort for the modelling of the underlying 

structure lies in the abstraction of the SFG. We then shortly presented a possible method, which 

analyses the results of our suggested verification method (data model), for error localization. The 

method bases on the coverage of the faults by tests (test-cover-table). This information was 

projected in a SFG, which we called fault tree. It serves as a possible method to quickly identify 

involved defective components, in order to then exchange them specifically, which is reducing 

enormous test costs. The method is easy to understand and suitable for complex system, which 

consist of many sub-systems and thus components. It preserves the direction and confirms itself, 

which makes the method a robust, structure-preserving method of fault diagnosis. Each assembly 

of a product contains a test coverage table, thus a fault tree. If all test coverage tables are 

superimposed, i.e. considered parallel, we get important additional information about the 

dependency between tests and the involved components. This can additionally be applied 

adaptively and thus a machine learning can be achieved [14] [15] [16]. In addition to the better 

understanding of complex systems and the interdependency between their components, it also 

provides fast, accurate and cost-effective error localization. The lossless compression 

(compaction) shown here ensures a small requirement or storage space and thus low computing 

time. It makes the test process compact and thus saves costs. QVL as well as TVL can be 

compacted. The realization of the data compaction in full parallel qualifies this method for an 

implementation in FPGA. This line-wise compacted database is column-wise multidimensional 

for its functional part, e.g. in dependencies or correlations between the individual functions (spec, 

test, k, / k) and their possible error models. Thus, it is useful to investigate such correlations also 

from the aspect of classification methods, which can reduce and classify the dimensions of data 

sets to relevant features. The Principal Component Analysis and the Linear Discriminant Analysis 

would enable this data classification [17]. 
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