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ABSTRACT 
 

When carrying out a separation of test results from an electronic system, coping with enormous high-

dimensional data sets is necessary but problematic. The input of high-dimensional data, in which not a few 

elements of a data set are irrelevant or less relevant than others, usually lead to inadequate results. It is 

therefore helpful to use methods that classify the individual dimensions of the data set according to their 

relevance, or the deviation of the set in this dimension. Such data analysis methods are used in many areas, 

such as industry, medicine, biology or in the field of military reconnaissance for data reduction and 

classification as well as foresting and verification of electronic systems and circuits. In this paper, the 

Principal Component Analysis and the Linear Discriminant Analysis are presented as classification 

methods, their mathematical background is explained and flow diagrams of the algorithms are presented. 

By means of areal application example i.e. test results of an electronic system it becomes clear, how 

suitable these classification methods are in order to analyse of high-dimensional test results (test data) and 

e.g. to discover the reasons of early failure of an electronic system. Further, it is shown how useful it is to 

carry out both classification procedures in a certain order in order to ensure an optimal analysis and to 

come to the cause of an early failure more precisely. 
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1. INTRODUCTION 
 

In many areas of research, the analysis of test results of a system is necessary. Huge data sets of 

messages and signals of countless redundant sensors of a system are characterized by criteria such 

as their amount, their complexity and their speed. Globally, companies and research institutes 

strive to discover valuable information and connections from the vast amounts of data that have 

so far been difficult or impossible to determine [1]. Very often, enormous, high-dimensional data 

sets need to be collected and analysed from experiments. However, the input of high-dimensional 

data, in which not a few elements of a data set are irrelevant or less relevant than others, usually 

lead to inadequate results [2]. Thus, it is useful to use classification methods that classify the 

individual dimensions of the data set according to their relevance. In this paper, two different 

known classification procedures will be investigated and discussed. We present the Principal 

Component Analysis (PCA) and the Linear Discriminant Analysis (LDA). We are explaining the 

mathematical background for each method, using flow charts to summarize the corresponding 

algorithms and illustrating them by means of the same application example (database). In this 

example, it's about finding out cause of early failures of an electronic medicine system (device). 

For this purpose, we developed, with the help of the resulting flow charts, self-programmed 



International Journal of Electronic Design and Test (JEDT) Vol.1 No.1 

 80 
 

MATLAB codes for each method in order to determine the results of classification, generate 

graphical representations and provide visual insight into the capabilities of the analysis programs. 

We show how a specific order of the analysis methods can lead to more precise results in the 

matter of analysis and separation of high-dimensional test results of an electronic system. Finally, 

we compare the methods with each other based on criteria such as ease of use and classifying 

capacity and discuss the advantages, disadvantages and the possible applications of the individual 

procedures. 
 

2. PRINCIPAL COMPONENT ANALYSIS 
 

2.1. Definition 
 

The PCA is a variable-orientated, linear classification method for data reduction. It was 

introduced by Karl Pearson in 1901 [3] and further developed by Harold Hotelling in the 1930s 

[4]. The method uses linear structures enabling the reduction and interpretation of large 

multivariate data sets. This method allows the user to replace a number of original variables by a 

smaller number and it extracts relevant information from a given data set by reducing the 

dimension. By means of an orthogonal transformation, a new set of uncorrelated variables, the so-

called Principal Components (PCs), is generated as a transformed database [5]. The newly 

determined PCs are linear combinations of the original variables. The first PC is so designed to be 

responsible for most of the variation in the original data and thus causing the reduction of the data 

size [6]. If the first PC describes the majority of the data variation, than this can also reduce the 

dimension of the problem. Through the transformation into PCs, the data sets can be visualized 

graphically and interpreted better. 
 

2.2. Mathematical derivation 
 

Since the PCA is already well established in today's technology and is already actively used e.g. 

in image processing [7], in the analysis of dynamic movements [8] or even in the anomaly 

detection in spacecraft [9], we restrict ourselves to the required steps and their corresponding 

most important equations to set up the flow chart. Figure 1 describes the PCA algorithm by 

means of a flow chart. In it, the derivation of the PCs is represented by the mathematical formulas 

required. The PCA allows to obtain PCs or a transformed database (same abbreviation: PC) after 

entering the original database (D), with n-rows and m-columns ((n x m)-matrix) and performing 

five steps. First (step 1), a standardised database (S) is generated, which is column-wise mean-

free, has column-wise value one as mean variation and occupies the same dimension as D. The 

sense of this step (standardisation) is to transform the various variables in the database so that 

they accept similar values and are directly comparable. Then (step 2), a correlated database (C) is 

generated, from which a correlation matrix ((m x m)-matrix) emerges, giving information about 

the relationships of variables. Further (step 3), the eigenvalues λj for   j = 1, 2, …, m of the 

calculated correlation matrix are determined. The eigenvalues λj, characterizing general properties 

of linear images, are ordered accordingly to their size from large to small. Next (step 4), the 

eigenvectors Vj are determined with the help of the calculated and ordered eigenvalues λsj of 

correlation matrix C. Last (step 5), the subsequent multiplication of the standardised data S with 

the eigenvector matrix V = (Vj) results in the transformed database PC. Thus, we have converted 

the original database D into database PC, which has the same dimension of a (n x m)-matrix [10]. 

Here one speaks of an orthogonal transformation or a projection of the standardised database S 

onto the eigenvectors Vj, which are therefore called the coefficients of the PCs. However, the 

corresponding vectors PCj (n x 1-matrix) to the columns of PC are not all equivalent. They can be 

arranged depending on the size of the ordered eigenvalues λsj of the correlation matrix C. The 

information value of the variables decreases from PC1 to PCm. The following considerations are 

used to determine the variances of each PC. This should give us an idea of how the variances are 

related to the eigenvalues λsj. In general, the variance of PCj can be represented by means of (1).  
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Figure 1. Flow chart of the PCA 

In the following equations mentioned in this paper the abbreviation for variance and transposed 

will be "var" and "T". The matrix S is mean-free, i.e. the averaging vector S = (0). It follows that 

PCj = S·(V̅j) equals zero and thus the variance of PCj can further be calculated as defined in (2). 

 var(PCj) = 
1

n - 1
(PCj - (PCj

̅̅ ̅̅̅))
T
·(PCj - (PCj

̅̅ ̅̅̅)) (1) 

 var(PCj) = 
1

n - 1
 (PCj

T·PCj) = 
1

n - 1
(S·Vj)

T
·(S·Vj) (2) 

According to general mathematical matrix rules (S·Vj)T = Vj
T·ST follows and thus (3). After 

conversion of the formula from step 2 (Correlation) from the flow chart (Figure 1) one obtains 

(4). Substituting (4) into (3) results in (5). 

 var(PCj) = 
1

n - 1
(Vj

T∙ST∙S∙Vj) (3) 

 ST·S = (n -1)∙C (4) 

START

σj =  varj 

varj =
1

n − 1
 (dij − D̅j)

2

n
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 var(PCj) = 
1

n - 1
(Vj

T·(n -1)·C·Vj) (5) 

Since correlation matrices are in general symmetrically and square, the eigenvectors Vj of 

correlation matrix C are orthogonal [10], i.e. VT = V-1, which is why (6) results the following 

way. After reducing the constant (n-1) in (6), finally (7) results for the variance of a j-th PC. 

 var(PCj) = 
1

n - 1
(Vj

−1 ·  n - 1 ·C·Vj) (6) 

 var(PCj) = (Vj
−1·C·Vj) = λsj (7) 

So mathematically, it can be shown that the variance of a j-th PC equals the j-th eigenvalue of the 

correlated database. Essentially, the PCA corresponds to a rotation of the coordinate system in the 

direction of maximum variance [10]. The first PC shows the greatest variance, since within the 

analysis the eigenvalues were arranged according to their size. Equation (8) follows accordingly, 

which reproduces the proportion of shared variance of the data. 
 

 1

m
·λsj  = 

1

m
·var(PCj) 

(8) 

Thus PCs with great variance represent interesting dynamics while PCs with low variance 

represent low noise and therefore not much of information of the original database gets lost, when 

PCs with low variance are ignored [11]. The following application example eases the 

understanding of the theory and mathematics of the PCA discussed so far. 
 

2.3. Application example 
 

In many areas of research, it is necessary to detect errors and thus search out the causes of e.g. 

early failure. For that, PCA is a very useful analysis tool. Let us say a certain company produces 

and sells an electronic product, which consists of many digital and analog subsystems. Often their 

product "breaks" before the warranty period. The reasons for the early failure must be identified 

in order to achieve improvements in product production. Meanwhile, in many products an 

integrated chip stores important information about user and product behaviour. Engineers can use 

these information as a database and filter the most important user variables, responsible for the 

early failure, by using the PCA. For this, the knowledge about user variables of functional, not 

early failed products is necessary to enable a separation of the variables. In this case, the user 

variables e.g. voltage, current, temperature, etc. are the eigenvectors and the products are the PCs. 

We demonstrate the PCA analysis through the following study: We consider a database of about 

2300 data sets or objects and 68 features (user variables) that should represent 2300 different 

devices of the same product of a company (Data for reasons of data protection not explicitly 

shown). They are sorted according to their lifespan (Figure 2), so that the first 450 represent early 

failed products (red) and the last 450 represent late failed products (green). The remaining data in 

black are in the line between early and late failure, so will not be included in the PCA and in the 

entire article. We concentrate ourselves on similar numbers of early and late failed products for 

reasons of clarity and accuracy. After performing the PCA algorithm (Figure 1) on the 900 sorted 

data sets, 68 PCs are calculated (PC1 to PC68). Since the method bases on matrices, we used a 

self-written program in MATLAB. For each PC, the percent of the variance (per_of_var) is 

calculated using (9) and the results are shown in Table 1. Table 1 shows that the four first PCs 

have the largest eigenvalues and cover over 69% of the variance. The number of relevant PCs 

depends on the point at which the remaining eigenvalues are relatively small and approximately 

all equally large. As a result of the PCA, it is clear that the first four PCs are responsible for about 

70% of data information, while the remaining PCs are contributing to 4% or less. In addition, a 

visual representation of the eigenvalues against the PC number (Figure 3) is also helpful for the 

determination of the relevant PCs. Next, it is useful to display the object distribution in a plot 

with respect to the PCs.  
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Figure 2. Life curve for 2300 devices of the  

same product 

 

 

Figure 3. Representation of the eigenvalues over 

the PC number 

Table 1. Eigenvalues and percentages of variances 

PC λs 
percent of 

variance 
PC λs 

percent of 

variance 
PC λs 

percent of 

variance 
PC λs 

percent of 

variance 

1 21,4944 31,6094 % 18 0,4357 0,6407 % 35 0,0433 0,0637 % 52 0,0012 0,0018 % 

2 14,2059 20,8910 % 19 0,4142 0,6091 % 36 0,0350 0,0515 % 53 0,0006 0,0009 % 

3 7,2234 10,6226 % 20 0,3992 0,5871 % 37 0,0310 0,0456 % 54 0,0003 0,0004 % 

4 4,3277 6,3643 % 21 0,3231 0,4751 % 38 0,0294 0,0432 % 55 0,0003 0,0004 % 

5 2,6031 3,8281 % 22 0,3039 0,4469 % 39 0,0232 0,0341 % 56 0,0002 0,0003 % 

6 2,2873 3,3637 % 23 0,2760 0,4059 % 40 0,0165 0,0243 % 57 0,0002 0,0003 % 

7 2,0789 3,0572 % 24 0,2642 0,3885 % 41 0,0127 0,0187 % 58 0,0002 0,0003 % 

8 1,8859 2,7734 % 25 0,2190 0,3221 % 42 0,0117 0,0172 % 59 0,0001 0,0001 % 

9 1,3294 1,9550 % 26 0,1871 0,2751 % 43 0,0083 0,0122 % 60 0,0001 0,0001 % 

10 1,2881 1,8943 % 27 0,1780 0,2618 % 44 0,0071 0,0104 % 61 0,0001 0,0001 % 

11 1,1177 1,6437 % 28 0,1630 0,2397 % 45 0,0059 0,0087 % 62 0,0001 0,0001 % 

12 0,9086 1,3362 % 29 0,1319 0,1940 % 46 0,0053 0,0078 % 63 0,0001 0,0001 % 

13 0,8752 1,2871 % 30 0,1250 0,1838 % 47 0,0039 0,0057 % 64 0 0 % 

14 0,7163 1,0534 % 31 0,1025 0,1507 % 48 0,0031 0,0046 % 65 0 0 % 

15 0,6712 0,9871 % 32 0,0894 0,1315 % 49 0,0027 0,0040 % 66 0 0 % 

16 0,5224 0,7682 % 33 0,0773 0,1137 % 50 0,0017 0,0025 % 67 0 0 % 

17 0,4631 0,6810 % 34 0,0658 0,0968 % 51 0,0016 0,0024 % 68 0 0 % 

 

 per_of_var = 
var(PCj)

∑ var(PCj)
68
j=1

·100% = 
λsj

∑ λsj
68
j=1

·100% (9) 

For the graphic representation, the coordinates of the 900 objects (450 red and 450 green), sorted 

according to lifespan, are plotted with respect to PC1 and PC2 in a coordinate system with PC1 as 

x-axis and PC2 as y-axis and we obtain Figure 4. This figure shows something interesting: From 

this simple representation, a first separation of the data between early and late failed can be 

observed. Although not all objects can be separated to a hundred percent and overlapping being 

avoided, a large part of the object distribution is specific. In order to display the features 

graphically, their coordinates have to be plotted. These are listed in eigenvectors, which are 

defined as coefficients of the PCs. We seek for 2D-plots and thus choosing the first eigenvectorV1 

as x and the second eigenvectorV2 as y-axis. In addition, the individual points in the plot are 

linked to the origin in order to obtain vectors of features Mj for j = 1 to 68 and thus better 

represent their location in the coordinate system (Figure 5). It is obvious, that some features as 

e.g. M1, M7, M8 and M9 cannot be seen clearly, since overlapping occurs, which arises through 

same coordinates in the eigenvectors. We now want to investigate what the causes of early and 

late failure are. To answer this question, we overlay the representations of object data distribution 

and vectors of features (Figure 4 and Figure 5) in Figure 6. This allows to see, which features are 
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in which areas of the objects and thus possibly influencing the behaviour of the devices. It is 

clear, that the features M1, M6, M7, M8, M9, M10, M24 and M25 clearly correlate with red 

objects (early failure) whereas e.g. features M4, M56, M57, M59, M65 and M66 are correlating 

with the green object cloud (late failure). 

 
Figure 4. Representation of the object data 

distribution for the first two PCs 

 
Figure 5. Representation of the vectors of all 68 

features M for the first two PCs

 
Figure 6. Representation of the object data distribution and vectors of all 68 features M 

In order to confirm and investigate more precisely the above-observed correlation of the 

mentioned features with the object clouds, the entire database is reduced to some of these 

features. This is followed by a re-execution of the PCA on the reduced database. As a result, the 

statements made in Figure 6 are confirmed in Table 2 and in the corresponding Figure 7, 

analogous to Table 1 and Figure 6, for the features M1, M6, M7, M8, M9, M10, M24 and M25. 

Table 2. Eigenvalues and percent of variances for all PCs of reduced database (M1, M6, M7, M8, M9, 

M10, M24 and M25) 

PC λs percent of variance cumulative 
1 5,5473 69,341 % 69,341 % 

2 1,1049 13,811 % 83,152 % 

3 0,5818 7,2731 % 90,425 % 

4 0,4284 5,3552 % 95,78 % 

5 0,3367 4,2085 % 99,989 % 

6 0,0006 0,0084 % 99,997 % 

7 0,0002 0,0025 % 100 % 

8 0,0001 0,0002 % 100 % 
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Figure 7. Representation of the object data distribution and vectors of features of reduced database (M1, 

M6, M7, M8, M9, M10, M24 and M25) 

The first two PCs cover almost 83% of the variance and thus the data. So more than compared to 

the entire database, where the first two PCs cover only 50% of the data (Table 1). The correlation 

between the features in the reduced database is stronger, or there is a greater linear dependency 

between the features and the late-failed objects. Figure 7 shows the object data distribution and 

the vectors of features. To the right there is a red object cloud (early failed devices) and all 

eigenvectors or features show in the same direction (orientation). Here too, an overlapping 

between the features M1, M8 and M9 occurs. This figure can be used to indicate which features 

are more important or play a major role for an early failure than others. M1, M6, M7, M8 and M9 

correlate more than M10, M24 and M25 because they accumulate stronger with the red object 

cloud. In addition to the direction, the magnitude of the vectors also has an information content. 

The longer the vector, the more often the corresponding feature appears, and the more important 

is this user variable. In our case (Figure 7) no further information are obtained from the 

magnitudes since all vectors are approximately equal in length. Next, PCA is applied to the 

features M4, M23, M56, M57, M59, M64, M65 and M66 and we obtain Table 3 and Figure 8 as 

result. Table 3 shows that the first two PCs cover over 86% of the data, and the first four together 

over 97%. This indicates a strong correlation of the features with late failed devices. This can be 

seen better in Figure 8, a green cloud to the right with eigenvectors in the same direction. Thus 

the statements made in Figure 6 are confirmed. Here too, some features like M56, M57, M59, 

M65 and M66 correlate more than M4, M23 and M64 because of the stronger accumulation with 

the green object cloud. The interpretation of the PCA results can be carried out not only by means 

of graphical representations, but also very well and more precisely by calculation, e.g. by means 

of the mathematical concept of the correlation coefficient. 

Table 3. Eigenvalues and percent of variances for all PCs of reduced database (M4, M23, M56, M57, M59, 

M64, M65 and M66) 

PC λs percent of variance cumulative 
1 5,9615 74,519 % 74,519 % 

2 0,9642 12,052 % 86,572 % 

3 0,6683 8,3542 % 94,926 % 

4 0,2210 2,7619 % 97,688 % 

5 0,1137 1,4222 % 99,110 % 

6 0,0432 0,5402 % 99,650 % 

7 0,0276 0,3442 % 99,994 % 

8 0,0005 0,0057 % 100 % 
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Figure 8. Representation of the object data distribution and vectors of features of reduced database (M4, 

M23, M56, M57, M59, M64, M65 and M66) 

The measure of a linear relationship of two interval-scaled features can be described by the 

dimensionless correlation coefficient. Let the correlation coefficient of vector X = (x1, x2, ...,xn) 

and vector Y = (y1, y2, ..., yn) be defined by (10). Correlation coefficients may take on values 

between -1 and 1, where a positive value implies a relationship such that high values of 

characteristic x are associated with high values of characteristic y while negative values describe 

an opposite relationship. A value of zero implies an uncorrelated relationship between the 

features. Through (10), the correlation coefficients of PC1 and PC2 for the red as well as for the 

green objects from the reduced database M1, M6, M7, M8, M9, M10, M24 and M25 (Figure 7) 

were determined in (11) and (12). 

 corr X,Y = 

1
1 - n

∑  xi - x ·(y
i
 - y)n

i=1

√ 1
1 - n

∑  xi - x 
2n

i=1
√ 1

1 - n
∑ (y

i
 - y)

2n
i=1

 (10) 

 corr(PC1_red, PC2_red) = 0,332 (11) 

 corr(PC1_green, PC2_green) = -0,382 (12) 

On the basis of the two correlation values for green and red objects, it can be said that the two 

groups are partially separated because the correlation values are nearly the same according to 

their amounts but have different signs. Thus, the two groups show in the opposite direction. In 

order to show the direction in which the eigenvectors or the features show, the correlation 

coefficient of the first two eigenvectors has to be determined. Table 4 shows the resulting two 

first eigenvectors V1 and V2, as coordinates of the chosen features, with which the correlation can 

be calculated in (13). It can thus be proved that the features M1, M6, M7, M8, M9, M10, M24 

and M25 are in the same direction as the red cloud. This computational method after the PCA 

implementation, which is based on the calculation of correlation coefficients of the PCs, can be 

automated. In doing so, other methods can be additionally integrated, e.g. a calculation of the 

magnitudes of the eigenvectors with the aid of Pythagoras. This can be extended to more than two 

PCs in order to cover as much data as possible, thus minimizing the loss of information. 

Graphical representation will further confirm the calculations and the interpretation. In the next 

chapter, another multidimensional analysis for data separation is explained. The mathematical 

background of the LDA and the analysis method is explained using the same application example 

or database. In addition, it is shown how more accurate LDA results can be generated by means 

of a prior PCA execution and generally a better separation of the data is made possible. 
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Table 4. Coordinate of the chosen features 

feature V1 V2 

M1 4,285 1,061 

M6 3,979 2,517 

M7 4,230 -1,937 

M8 4,285 1,061 

M9 4,285 1,061 

M10 3,097 5,978 

M24 2,925 -6,531 

M25 3,211 -4.949 

 corr V1, V2  = 0,3023 (13) 

3. LINEAR DISCRIMINANT ANALYSIS 
 

3.1. Definition 
 

The LDA is a multivariate method for the analysis of groups or class differences, with which it is 

possible to examine and analyse groups with consideration of several variables (features). In 

principle, several variables are combined to one variable by a discriminant function (separation 

function) through linear combination under minimal loss of information. R. A. Fischer first 

described the discriminant analysis in 1936 in "The use of multiple measurements in taxonomic 

problems"[12]. Nowadays this method of analysis is used in fields such as image processing [13] 

and pattern recognition [14] [15] and serves as a classifier and method for dimensional reduction. 

3.2. Formulation of the discriminant function 
 

Since the LDA is already well established in today's technology and is already actively used, we 

restrict ourselves to the required steps and their corresponding most important equations to 

understand the method better and to set up the flow chart (analogous to PCA). An appropriate 

function for optimal group separation has to be determined. In the further progress of this paper, 

we limit our consideration to two groups, analogous to PCA. In Figure 9, the frequency 

distributions of two groups A (triangle) and B (circles) were each projected onto an x1 and x2-

axis. Relatively large intersection regions are visible in which the values are assigned to group A 

or group B, i.e. the values in the overlap range can not be unambiguously assigned to either 

group. The two axes x1 and x2 are not suitable as a separation function. In Figure 10 larger 

overlapping areas are recognizable for the functions y* and y** as discriminant axes and thus no 

clean separation of the two groups is possible. 

 
Figure 9. Frequency distribution of two groups. 

Separation by the variables x1 and x2. Changed 

according to [16] page 319 

 
Figure 10. Separation by different discriminant 

axes y, y* and y**. Changed according to [16] 

page 321 
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However, the function y does not have any overlapping areas of the frequency distributions, 

which we use to draw in a separation line, which separates the groups optimally. The desired 

discriminant function, here y, can now be expressed as the linear function of the two variables of 

features x1 and x2 through (14) [16].  
 

 y =  a0 + a1·x1 + a2·x2 (14) 

Generalized for m-features, the function equation is as in (15). 
 

 y =  a0 + a1·x1 + a2·x2 +⋯+ am·xm (15) 

The equation corresponds to a linear function with the discriminant variable y and the variables of 

features xj for j = 1, 2, ..., m. The coefficients a1, a2 to am are termed as discriminant coefficients 

and forming together the discriminant coefficient vector a with aT = (a1, a2, ..., am). a0 is called 

constant term. The discriminant function is thus a mapping from the m-dimensional space of 

features into the one-dimensional space of the discriminant variables. In order to obtain the 

canonical discriminant function, the unknown coefficients aj must be estimated in the first step of 

the LDA in a way of maximisation of the discriminant degree (detailed consideration in section 

3.3.1). Then an estimator for the constant term a0 must be determined under condition: y̅ = 0 [17]. 

In this case, y̅can be calculated using (16). 
 

       y̅ = 
1

n
 y

i
 

n

i=1

= 
1

n
 (a0+a1·x1i+a2·x2i+…+am·xmi

n

i=0

) 

           y̅ =
1

n
n·a0+

1

n
 a1·x1i+

1

n
 a2·x2i+…+

1

n
 am·xmi

n

i=1

n

i=1

n

i=1

 

                              y̅ = a0+a1

1

n
 x1i+a2

1

n
 x2i+…+am

1

n
 xmi

n

i=1

n

i=1

n

i=1

 = a0+aT·X̅ (16) 

From (16) and with the aid of the condition (y̅ = 0) it follows that the constant term a0 = -aT·X̅. 

Here, X̅ is the mean value vector of both groups, which together consist of n objects. 

3.3. Estimation of the discriminant coefficients 
 

Good separation results in the smallest possible overlapping range of the frequency distributions 

on the discriminant axis. The following discriminant criterion test size (TS) applies as a measure 

of the distinguishability of groups [17]. 

 TS = 
MQSA

MQSE
 = 

1
G-1

QSA

1
n-G

QSE

→MAX (17) 

QSA describes the mean variation between the groups expressed as square deviation of the mean 
values from the total mean value of the groups (18). QSE stands for the mean variation within the 
groups expressed as total square deviation from the mean values in the groups (18). 

 QSA =  ng·(y̅
g
− y̅)

2

G

g=1

   and    QSE =   (y
gi

-y̅
g
)
2

ng

i=1

G

g=1

 (18) 

Thus, MQSA and MQSE in (17) represent the middle sum of squares. In our case, it is assumed 

that G = 2, thus two groups are separated by the discriminant function y. Both groups consist of   

n = n1 + n2 samples (objects) and the value y is the discriminant function value. By maximising 

(17), or respectively by maximising the distance between the groups (QSA) and minimizing the 

distances within the groups (QSE), the conditions for a minimum overlap range are fulfilled. 
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3.3.1 Mathematical derivation of the discriminant function 
 

Let two independent groups A and B be given with nA and nB samples, to which a number m of 

features belong. The matrices XA = (XA1, XA2, ..., XAm) and XB = (XB1, XB2, ..., XBm) with XAj= 

(xA1j, xA2j, ..., xAnj)T and XBj = (xB1j, xB2j , ..., xBnj)T for j = 1, 2, ..., m, describe the corresponding 

groups. The arithmetic mean value vectors X̅A = (X̅A1, X̅A2, ..., X̅Am)T and X̅B = (X̅B1, X̅B2, ..., 

X̅Bm)T are obtained. The mean values X̅Aand X̅B can be determined according to (19). 

 X̅ = 
1

n
 xi

n

i=1

 (19) 

We now seek a discriminant function y or respectively a discriminant value vector Y in the form 

of (23), which optimally separates the two groups. Let us consider here, that a0 = 0. 

 

Y = X·a = 

(

 
 
 

x11 x12 … x1m

x21 x22 … x2m

⋮ ⋮ ⋱ ⋮
xnA1 xnA2 … xnAm

⋮ ⋮ ⋱ ⋮
xn1 xn2 … xnm )

 
 
 

∙

(

  
 

a1

a2

a3

a4

⋮
am)

  
 

= 

(

 
 
 
 

a1x
11

+a2x
12

+… + amx
1m

a1x
21

+a2x
22

+… + amx
2m

a1x
31

+a2x
32

+… + amx
3m

a1x
41

+a2x
42

+… + amx
4m

⋮
a1x

n1
+a2x

n2
+… + amx

nm)

 
 
 
 

 

                  Y = a1 (

x11

x21

⋮
xn1

)  + a2 (

x12

x22

⋮
xn2

)+ … +am (

x1m

x2m

⋮
xnm

)  = a·X1 + a2·X2 + … + am·Xm (20) 

Here, aj are the discriminant coefficients to be estimated and X is a (n x m)-matrix with                

n = nA + nB, which includes the matrices XA and XB, i.e. X = (XA ; XB). The discriminant 

coefficients vector a points to the origin of the coordinate system with aT = (a1, a2, ..., am). By 

multiplying the matrix X with the vector a, Y is a vector, containing discriminant values. The 

previous explanation for two features x1 and x2are visualised in Figure 11. 

 

Figure 11. Optimal separation of the groups A and B by the discriminant function 

Since the LDA is already well-established in today's technology and mathematical derivations are 

not a priority in this paper, we skip derivation steps for generating an equation for TS for two 

groups A and B at this point. The most important derivation steps are shown in (21) and (22) as 

 

 

 

 

a =  
a1

a2
  

Discriminant axis

B

Ax̅B1  

x2 

x1 

x̅A2  

x̅A1  x̅B1  

Separation plane

y̅A  

y̅B  

y = 0 

y 



International Journal of Electronic Design and Test (JEDT) Vol.1 No.1 

 90 
 

extract from the total derivation procedure and an intermediate result of TS as a function of 

discriminant coefficient vector a is shown in (23).  

 Y = [
YA

YB
]  ; Y̅ = 

nA·Y̅A+ nB·Y̅B

nA+ nB

 (21) 

 var(Y) = 
1

n-1
∑ (y

i
-y̅)

2n
i=1  = var(X·a) = aT·cov X ·a (22) 

 

TS a =
(y̅A - y̅B)

2
(

nA· nB

nA+ nB
)

1
nA+ nB - 2

( nA - 1  · a
T·SA·a + (nB - 1)·aT·SB·a)

 (23) 

In (22) "cov" stands for mathematical expression covariance. SA and SB are the covariance 

matrices of XA and XB which can be calculated with (24). 

 SA = 
1

m-1
· (XA - X̅A)

T
· (XA - X̅A)    and    SB = 

1

m-1
· (XB - X̅B)

T
· (XB - X̅B) (24) 

The next step is to simplify (23) by using an abbreviation. Let S be an auxiliary variable called 

total covariance matrix (25). This simplifies function TS(a) according to (26). 

 S = 
SA nA - 1  + SB nB - 1 

nA + nB - 2
 (25) 

 
TS a  = 

(y̅
A

- y̅
B

)
2

aT · S· a
(

nA· nB

nA+ nB

)  
(26) 

Since S basically consists of the sum of two covariance matrices SA and SB, S is symmetric and 

square and can be calculated as a multiplication of S1/2 with S1/2. Moreover, the constant         

nA·nB/(nA + nB) can be omitted since it plays no role in maximising the target TS (a). In addition, 

the numerator in (26) is replaced by (27) to obtain the expression for TS (a) in (28). The product 

S1/2 S-1/2 corresponds to the unit matrix and can thus be inserted in (28) without changing it. It is 

inserted in the numerator twice at left and right and we obtain (29). 

       (y̅
A
 – y̅

B
)
2
 =  a0 + X̅A∙ a – a0 – X̅B∙a 2 = (X̅

A
∙ a - X̅B∙ a)

2
 

    = (X̅
A

∙ a - X̅
B

∙ a)
T

∙ (X̅
A

∙ a - X̅
B
 ∙ a)  

  = ((X̅
A
 - X̅

B
) ∙ a)

T
∙ ((X̅

A
 - X̅

B
) ∙ a) 

                    = aT∙(X̅
A

 - X̅
B

)
T
(X̅

A
 - X̅

B
)∙ a  (27) 

 S a  =
aT·(X̅

A
 - X̅B)

T
·(X̅

A
 - X̅B)·a

aT·S1 2⁄ ·S1 2⁄ ·a
 (28) 

 TS a =
aT·S1 2⁄ ·S-1 2⁄ ·(X̅

A
 - X̅B)

T
·(X̅

A
 - X̅B)·S-1 2⁄ ·S1 2⁄ ·a

aT·S1 2⁄ ·S1 2⁄ ·a
 (29) 

In the following step, a further simplification is carried out by the auxiliary vector d = S1/2 ·a. 

Since S1/2 is a symmetric matrix, (S1/2)T = S1/2, dT = aT·S1/2 follow. This leads to (30) for TS as a 

function of d. The point is to maximise TS(d) by choosing a suitable vector h.  

 TS d =
d

T
·S-1 2⁄ ·(X̅

A
 - X̅B)

T
·(X̅

A - X̅B)·S-1 2⁄ ·d

d
T
·d

    (30) 

The expression dΤS-1/2 (X̅A-X̅
B

)Τ is a scalar, whose square is decisive in TS(d). If this number and 

thus its square are to become maximal, the vector d must be selected parallel to S-1/2 (X̅A-X̅
B

), 
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which follows in (31). By multiplying with S-1/2 twice we obtain the desired discriminant 

coefficient vector and thus the desired discriminant function (32) which separates the two groups.  

 d = S-1 2⁄ ·(X̅A - X̅B)
T
= S1 2⁄ ·a  (31) 

 a = S-1·(X̅A - X̅B)
T
 and Y = X·a  (32) 

The discriminant coefficients aj can also be obtained, though more complex, directly by partial 

differentiation of TS with respect to vector a and through (33). "N" stands for numerator, "D" for 

denominator and the symbol "’" for the operation of derivation. By maximizing TS(a), through 

equating the derivation in (32) with zero, one obtains the determination equations, which are 

needed for calculation of the discriminant function. By substituting the values for XA and XB into 

these equations, the linear equation can be determined.  

 
TS(a) = 

TSN

TSD

→MAX ⇒ 
dTS(a)

da
=

TSN 
' ·TSD - TSD

'  ·TSN

TSD
2

 = 0 (33) 

However, the method discussed in this paper is, same as for PCA, based on a simplification using 

matrices and thus easier to derive and implement in a program code. 
 

3.3.2. Flow chart of the LDA 
 

In this chapter, the mathematical derivations in 0are summarised in a flow chart (Figure 12) in 

order to enable a program code for LDA algorithm as did for PCA. From the input of a database 

D ((n x m)-matrix) to the discriminant function y, the LDA proceeds, after the desired grouping 

into independent groups, in five steps: (Step 1) Calculation of the covariance matrices SA and SB 

of the groups A and B, (step 2) calculation of the self-defined total covariance matrix S, (step 3) 

calculation of the discriminant coefficient vector a and determination of the constant term a0 and 

(step 4) subsequent representation of the discriminant values vector Y. Analogously to the PCA, 

the LDA is to be represented in the following section by means of an example and the results 

analysed. For this purpose, the same database and the same example as in the PCA are used. 

3.4. Assignment of a test vector 
 

This section demonstrates how an object or a test vector V, containing the coordinates of an 

object, can be assigned to a group with the aid of LDA. Let V be a test vector with                     

VT = (v1, v2, ...,vm) containing new m-measured values i.e. features, V is assigned to the group A 

or B, to which the distance from   

 (X̅
A
 - X̅B)·S-1

⏟        
aT

·V to (X̅
A
 - X̅B)·S-1

⏟        
aT

· X̅A (34) 

or the distance from 

 (X̅
A
 - X̅B)·S-1

⏟        
aT

·V to (X̅
A
 - X̅B)·S-1·⏟        

aT

X̅B (35) 

is smaller. Figure 13 illustrates this principle. (36) and (37) apply for the distances dA and dB in 

Figure 13 with dA, dB > 0.  

 dA = -a0 - a
T·X̅A

T
- - a0 - a

T·V  = aT·V - aT·X̅A
T

 (36) 

    dB = a0 + a
T·X̅B

T
+(- a0 + a

T·V   = aT·X̅B
T
 - aT·V (37) 

In general, for a vector V the multiplication aT·V < 0, if V is in the direction of a, otherwise aT·V 

> 0. The distances dA and dB are always assumed positive. According to Figure 13, it can be said 

that the test vector V is closer to group A than group B in the ratio dB / dA. Thus, the probabilities 

PA and PB in (38) can be calculated as the affiliation of the test vector to group A and group B. 

 PA= 
dB

dA + dB

        PB= 
dA

dA + dB

 (38) 
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Figure 12. Flow chart of the LDA 
 

 

Figure 13. Assignment of the test vector V to the groups A or B 

DA = D(1: nA , 1: m)
DB = D(n − nB + 1: n, 1: m)
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3.5. Application example 
 

As in the PCA (Figure 2), we consider the same database with about 2300 samples (objects) and 

68 features to be examined through LDA. After performing the LDA by means of a MATLAB 

code using the five steps from the flow chart in Figure 12, m = 68 discriminant coefficients and a 

single constant term for 68 features are obtained. Now the LDA is tested for two randomly 

chosen features out of 68 for the 900 objects. These objects consist of 450 samples of group A 

(red) and 450 samples of group B (green) and are shown in Figure 14 

 

Figure 14. Separation of early and late failed for two random features 

The obtained discriminant coefficients and the constant term a0 were used with (14) to obtain the 

separation lines. These lines are drawn in blue in the individual plots in Figure 14, thus enabling 

separation of the objects. For each of the three plots shown below, the separation lines appear to 

effect an optimal separation of the objects. Despite some overlapping objects, the distribution of 

the red and green samples with respect to the separation lines is unambiguous. Considering three 

instead of two features, the separation line appears now as separation plane as shown in Figure 

15. The display format of this representation in Figure 15 is not suitable for the exact 

visualisation of the separation plane. By selecting a suitable viewing direction by rotating the 

graph, the position of the separation plane becomes clear (Figure 16). 
 

 

Figure 15. Separation of early and late failed for 

three random features 

 

Figure 16. Rotation of Figure 15 (features M1, 

M2 and M3) 

If we now consider all 68 features, 68 discriminant coefficients are obtained. If these coefficients 

are multiplied with each data set (object) i.e. with each row of the database, a vector with             

n = nA + nB values is obtained. The resulting vector Y is, in spite of one column, a 

multidimensional variable, that means the information of 68 features were combined into one 

vector. A representation of the values of Y on a y-axis of a graph leads to 68 plots. The x-axis 

describes each individual feature and thus each point describes an object. From that, the following 

plots in Figure 17, Figure 18 and Figure 19 arise for nA = nB = 450. Figure 17 consists of 23 plots 

(M1 to M23), Figure 18 for features M24 to M46 and Figure 19 for the remaining features. 

Taking a closer look on e.g. the plots of M1, M6, M7, M8, M9 and M25, we can notice that much 

more red dots occur with higher feature values, compared to green dots, until almost no green 

dots are present. Otherwise, only green dots appear with higher feature values in e.g. the plots of 

M4, M56, M57, M59, M65 and M66, while approximately no red dots are found. The features 
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listed here as examples also belonged to the relevant features of this database in the results of the 

PCA (Figure 7 and Figure 8).The following Figure 20 shows interesting plots that arise when the 

database is reduced on the basis of the relevant features, through prior PCA execution, and 

subsequently analysed by LDA. 

 

 

Figure 17. LDA for the first 23 features of the 

database (M1 to M23) 

 

Figure 18. LDA for 23 features of the database 

(M24 to M46)

  
Figure 19. LDA for the remaining 22 features of 

the database (M47 to M68) 

 

Figure 20. LDA after prior reduction of the 

database to relevant features by PCA 

 
y

i
 = a0 + a1·Mi1 + a2·Mi4 + a3·Mi6 + a4·Mi7 + a5·Mi8+ a6·Mi9 + a7·Mi25 

+ a8·Mi56 + a9·Mi57 + a10·Mi59+ a11·Mi65 + a12·Mi66  
(39) 

The projections of the data sets on the discriminant axis describe the multidimensional variables 

of the discriminant function y, which in this case is defined by (39) with i = 1, 2, ..., 900          

(450 + 450). The discriminant value vector Y consists of m-yi values, i.e. Y = (yi), which are 

having ak for k = 1, 2, …, 12 as weighting for Mj with j = 1, 4, 6, 7, 8, 9, 25, 56, 57, 59, 65, 66. 

The greater the magnitude of ak, the more meaningful Mj. It becomes clear that the green and red 

areas accumulate in specific areas of the plots. For example, the first plot to M1 in Figure 20 

shows that it would be more reasonable to select the lowest possible value of feature M1 since 
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one is here in the green cloud area, thus an early failure of the device might be avoidable. The 

same conclusion follows from the plots for M6, M7, M8, M9 and M25. In the plots of M4, M56, 

M57, M59, M65 and M66, the range of early failures lies within lower feature values. A closer 

look on M25 shows, that this feature is not as important as e.g. the features M1, M6, M7, M8 or 

M9 because there is no clear trend from the green to the red object cloud. A review of Figure 7 

certifies that, where we pointed out that M25 does not correlate as strong as the other features 

with the red object cloud and therefore does not play an equally strong role in predicting early 

and late failure. These plots provide essential information about how each feature is associated 

with early and late failure. The here 12 features pointed out in (39) must be considered at the 

same time as well as certain limit values of the individual features have to be determined. 

Nevertheless, it must be assured that the required functionality of the product must remain 

unrestricted. The actual goal of the LDA is not just to separate two or more groups by a 

separation function but also to make predictions for a new test vector (new object). One wants to 

determine to which of the two groups the test vector belongs. This has already been discussed in 

0. In addition, it is appealing to implement the LDA in Visual Basic for Applications (VBA, 

Microsoft). Analogously to MATLAB programming, all five steps of the LDA from Figure 12 

were implemented into a VBA code and the discriminant coefficients were calculated. In order to 

generate more accurate results, the reduced database with the relevant features (M1, M4, M6, M7, 

M8, M9, M25, M56, M57, M59, M65 and M66) are considered. In addition, VBA allows a 

practical use of user forms for manual input. The implementation was automated as follows: The 

number of samples nA for group A (early failure) was defined as input "Delta1" and nB for group 

B (late failure) as "Delta2". Finally, the test vector, as a row number of the database representing 

in our example a device number, is entered. Of course, new devices or respectively new data can 

be entered as new lines to the database. As an example, the values 450 for group A and group B 

are used. Line 9 is used as the test vector and the execution is confirmed with "Run". Figure 21 

shows the output of the LDA through the VBA code. As a result, the distance values of the test 

vector to group A and group B calculated by (36) and (37), are obtained. If the distance of the test 

vector to group A is smaller than to group B, a viewport is colored in red. Otherwise, a green 

color appears. In addition, the assignment of the test vector to the groups is quantitatively 

evaluated with a percentage value, using (38) a. In Figure 21 it can be seen that line 9 belongs to 

group A with 92,46% regarding the distance behaviour because the data are sorted by their 

lifetime. As a second test example, we choose row 800 of 900 sorted data sets. Again, the result is 

logical, since sample number 800 belongs to group B with 91,66%.It is therefore useful to firstly 

reduce a database to the most relevant features through PCA and to obtain the most suitable 

separation or discriminant function through a subsequent LDA procedure. The more precisely the 

most relevant features can be filtered out, the better the separation of the objects by the 

discriminant coefficients, of which the number is also, as much as the relevant features, getting 

reduced. This allows new objects to be assigned very accurately to their group and thus the 

operating behaviour of the products can be predicted.  

 

Figure 21. Result of sample sizes 450/450 and line numbers 9 and 800 as test vector 
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4. SUMMERY, DISCUSSION AND SUGGESTIONS 
 

The PCA is a linear, multidimensional data analysis with an orthogonal transformation of the 

original variables into a new set of variables (PCs) in the m-dimensional space. These variables 

are then analysed in detail in order to further reduce the amount of data and to interpret the test 

result. The PCA is a simple and good method to gain insight into the structure of large amounts of 

data. In particular, valuable information about the correlation structure of variables is 

obtained.The results of the PCA are dependent on axis scaling and are subject to a subjective 

interpretation. Another problem with the PCA is that the PCs are difficult to interpret. That is why 

a further computational and automated analysis after the PCA is necessary, in order to read out 

the valuable information from the reduced database.  

The LDA is a test method for analysing group differences using a classifier. Future observation 

can be classified by means of an assignment rule, i.e. the assignment to exactly one group. The 

predicted class of a new observation is determined by its location in space. The advantages of the 

LDA lie in its clear structure and interpretability. The discriminant coefficients can be determined 

very easily. Then only the determination of a linear separation function is necessary. Due to its 

flexibility and simplicity, LDA could be performed after an initial reduction of the database or 

removal of irrelevant features by a previous PCA, thus enabling a better separation. Interactions 

or even non-linear relationships of variables can, however, make separation of the groups more 

difficult. If the characteristics are overlapping, a clear separation through the discriminant 

function can be more difficult. In these cases, the LDA is not robust enough.  

Nowadays, design and technology are increasingly reaching their limits, so the validation and 

verification methods, such as simulations, are not capable of processing all possible test scenarios 

[18]. Consequently, the cost of testing complex systems has increased for why test is becoming a 

dominant factor in overall production cost [19]. This is why it is useful to use a method as support 

to keep the enormous test costs as low as possible while still covering all scenarios during testing. 

A system usually consists of subsystems, which are usually created in different departments of a 

company. There is very little information about their dependency and correlation among one 

another, if the system should be testes as a whole. The methods PCA, and/ or LDA discussed here 

could be used to extract valuable information from the database of a system in order to describe 

the correlations of the subsystems more closely and finally to formulate a meaningful dependency 

model. The larger the database, the more valuable information could be contained. This is 

achieved by inserting information as e.g. developer's know-how, production information and all 

test results of e.g. simulations and others into the database. The most valuable are additional 

information about the user behavior (user variable), which are stored by chips integrated into the 

system and are available in the event of a system failure. The multidimensional database, known 

as Big Data, can be analysed by the methods presented here to gain new information about the 

system, to understand the system better and to allow a new angle of view into the functionality. 

By integrating the analysis procedures (PCA and LDA) into the system, the database is constantly 

updated and the results of the analysis procedures are adapted so that the system is trained 

(machine learning). Updating the database and adapting the analysis allows an adaptive, 

multidimensional analysis that is accurate enough to make clear statements about the fault 

diagnosis during testing and even to make accurate predictions about early failure. This approach 

of adaptive multidimensional analysis as well as machine learning [20] [21] [22] reduces test 

costs, enables us to understand the complex system even better and allows the realisation of a 

more reliable construction. 

5. CONCLUSIONS AND OUTLOOK 
 

In this paper, two test procedures were presented for the reduction, separation and classification 

of high-dimensional test data from electronic systems and thus for the early failures diagnosis of 

an electronic device. The PCA and LDA are multidimensional analysis methods and have the 
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goal of classifying individual dimensions of the data sets according to their relevance, i.e. the 

deviation of the quantity in this dimension. We presented the test procedures individually and 

derived the important and necessary mathematical relationships. Flow diagrams of two algorithms 

were presented and used on an application example of a comprehensible test area. In this paper it 

was shown that the LDA works more effectively after a prior reduction of the database on 

relevant features by the PCA and consequently a more effective separation of the groups was 

enabled.  

PCA and LDA are linear methods, so it is advantageous that the data points have a correlation 

and are in a linear relationship to each other and thus contain crucial information about the 

separation. But if there are no linear relationships in the database, it makes more sense to use 

nonlinear separation methods first, to completely separate the non-linearly separable data, and 

then PCA and LDA can be used. This improve the quality of the results more and more [23]. 
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